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ABSTRACT OF DISSERTATION

A NOVEL COMPUTATIONAL FRAMEWORK FOR TRANSCRIPTOME
ANALYSIS WITH RNA-SEQ DATA

The advance of high-throughput sequencing technologies and their application on
mRNA transcriptome sequencing (RNA-seq) have enabled comprehensive and un-
biased profiling of the landscape of transcription in a cell. In order to address the
current limitation of analyzing accuracy and scalability in transcriptome analysis, a
novel computational framework has been developed on large-scale RNA-seq datasets
with no dependence on transcript annotations. Directly from raw reads, a proba-
bilistic approach is first applied to infer the best transcript fragment alignments from
paired-end reads. Empowered by the identification of alternative splicing modules,
this framework then performs precise and efficient differential analysis at automati-
cally detected alternative splicing variants, which circumvents the need of full tran-
script reconstruction and quantification. Beyond the scope of classical group-wise
analysis, a clustering scheme is further described for mining prominent consistency
among samples in transcription, breaking the restriction of presumed grouping. The
performance of the framework has been demonstrated by a series of simulation studies
and real datasets, including the Cancer Genome Atlas (TCGA) breast cancer analysis.
The successful applications have suggested the unprecedented opportunity in using
differential transcription analysis to reveal variations in the mRNA transcriptome in
response to cellular differentiation or effects of diseases.
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Chapter 1 Introduction

This year 2013 is the ten year anniversary of the completion of the Human Genome

project. The exploration on human genome in the past decade has revealed much

about its sequence and structure, as well as identification and annotation of many

functional sequences, known as genes. These efforts on genome studies keep refreshing

our vision into the mystery of the functioning and heredity of living organisms, which

has been and remains one central mission of the life sciences. Moreover, the discoveries

of the associations between genomic signatures and human diseases have further led

to the proposal of revolutionizing concept of “genomic medicine” in healthcare.

More and more diseases are being defined at the molecular level, for their ge-

netic causes and progression. In some tumor types, such as breast cancers and the

leukemias, molecular biomarkers have exhibited promise for clinical decision making

in addition to histologic classification. These biomarkers may help to distinguish the

disease into prognosis subcategories, to predict the response of a patient to a par-

ticular therapy and to potentially inform treatment strategies. By pinpointing the

characteristics of disease, precise drug usage may be enabled.

Despite the early achievements using genomic features such as gene expression1,

the performance of using molecular signatures to help disease prognosis has progressed

slowly. This raises the urgent need of, beyond the sequence annotation of the genome,

the functional investigations into the genome, which aim to unveil the mechanism

1The intensity of a gene’s sequence observed in a cell.
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of how genome sequences function and to fill the gap from genetic information to

phenotypes and diseases.

Modern sequencing technologies as well as bioinformatics approaches are rapidly

evolving and are providing unprecedented opportunities for such missions. In this

chapter, we will articulate the specific biological question and computational chal-

lenges that we aim to address, and we will show the landscape of the work completed

in this dissertation.

1.1 Differential analysis of mRNA transcriptome

The genes have been considered as the basic units of the hereditary material passed

from parents to offsprings. They contain the genetic information that determines

many characteristics of an organism, such as the eye color of a human being.

In eukaryotic organisms, such as humans, animals and plants, the genes do not

directly run the cells, but through an intermediate step called transcription. The

product of transcription is a set of transcripts. In transcription, one gene can be

viewed as a combination of multiple functional parts, and through reassembling these

parts the gene may generate multiple transcripts. Each transcript will then be re-

sponsible for a particular function in the cell. Beyond the presence of a transcript,

the abundance of the transcript correlates with the strength of the controlling signal.

Proper abundance of the transcripts balances the normal function of the cell. The

mRNA transcriptome, the totality of the diversity and the abundance of the tran-

scripts, then characterizes a cell at a particular time or under a particular condition.

The transcriptome is known to vary in response to cellular differentiation and
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diseases. By comparing transcriptomes at different conditions, the difference in the

abundance of transcripts may associate with the change of phenotype, hence may

reveal the functional roles of these transcripts. This type of differential analysis

between transcriptomes is called the differential transcription analysis.

1.2 The prominence of differential transcription analysis empowered by

sequencing the mRNA transcriptome (RNA-seq)

The advent of massively parallel RNA sequencing (RNA-seq) has provided an un-

precedented opportunity to comprehensively picture the entire transcriptome. RNA-

seq directly samples and sequences from the mRNA transcriptome without depen-

dence on predetermined sequence templates. This enables the discovery of novel

transcripts not cataloged in existing knowledge and those specific to a group of in-

dividuals. At the mean time, the transcript-level sequencing has a high resolution

spelling every nucleotide sampled and makes possible accurate quantification of the

transcripts present in the transcriptome.

The application of RNA-seq in clinical usage has also been practical. Current

RNA-seq technologies allow the profiling of a patient’s transcriptome for a cost typi-

cally less than $1,000 in less than one week.

Utilizing transcriptome samples from RNA-seq, differential transcription analysis

is now empowered the potential to reveal novel molecular biomarkers for human

diseases, through comparison of transcriptomes from normal samples and diseased

samples. For example, specific alternative transcripts and fusion transcripts2 are

2A fusion transcript is an abnormal hybrid transcript formed by two transcripts from different
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commonly found in the cancer transcriptomes [Maher et al., 2009, Berger et al.,

2010]. Differential transcription analysis among tumor samples and healthy samples

may reveal transcripts involved in tumor progression. Afterwards, therapies may

be developed to block the growth and spread of cancer by targeting on the identified

molecules, for example, hampering cell growth signaling, promoting the specific death

of cancer cells, stimulating the immune system to destroy specific cancer cells, and

delivering toxic drugs to cancer cells [National Cancer Institute].

1.3 The current RNA-seq-based differential transcription analysis

1.3.1 A standard workflow

The direct product of an RNA-seq experiment is a digital file containing the reads

from the sample and their sequences. Recognized by its computational difficulty and

extraordinary volume, this new type of biological data has raised many computational

and methodological challenges that excite the field of computational biology and

bioinformatics.

The most straightforward approach for differential transcription analysis is to

first measure the abundance of the transcripts using the sampled RNA-seq reads and

then compare the abundances across samples. However, the genomic location where a

read is sampled is not known, and the short reads cannot directly identify the original

transcripts.

Therefore, the computational solutions for differential transcription analysis aim

to bridge short read sequences and differences between original transcriptomes.

genes concatenated together.
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Step 1: alignment of RNA-seq reads to the genome.

In order to profile the original transcriptome, it is necessary to know the relation

among the sampled reads, such as their relative positions. This can be done by

mapping the sampled reads onto a reference genome and representing them using the

genomic coordinates. A reference genome is a set of known DNA nucleotide sequences

that specify all known genes and intergenic regions of a species. It is assembled by

sequencing the DNA from some representative individuals. Despite individual mod-

ifications such as single-nucleotide polymorphisms (SNPs) and insertions/deletions

(indels), the reference genome is highly consistent across individuals in the species.

The mapping of the RNA-seq reads, essentially, tries to find matches on the reference

genome for the sequences of the sampled short reads (detailed in Section 7.2). Impor-

tantly, gaps are allowed in the read alignments. A read whose sequence can directly

match a piece of the reference genome is mapped as an entirety and has an unspliced

alignment. A read whose sequence should be split into segments and matched to

different places of the reference genome separately has an spliced alignment. The

spliced RNA-seq read alignments then suggest the splice junctions and introns on the

genome, including those not known in existing annotation database.

Step 2: reconstruction of the transcripts

Provided the RNA-seq read alignment, the ab initio transcript reconstruction ap-

proaches can then be applied to reconstruct the transcripts in the original transcrip-

tome (detailed in Section 7.4.1). Because the sequences of RNA-seq reads are those
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kept in the mRNA transcripts, the genomic coordinates which have RNA-seq reads

aligned to can help recover the exonic sequences on the genome. Nucleotides may be

considered forming an exon if they are contained in a same read or a same mate-pair,

or if they locate close to each other on the genome (e.g., several bases apart) with

no spliced alignments in between. The splice junctions will indicate how the exons

should be concatenated during splicing. Then a graph can usually be constructed to

picture the connectivity in a potential gene of all the reconstructed exons or of all

the read alignments. Transcripts may further be identified by traversing the graph

for confident graph paths.

Step 3: transcript abundance estimation

From the genomic alignments of the RNA-seq reads, the expression level of each gene

may be evaluated, by collecting the number of reads falling in the gene’s region.

However, the abundance of individual transcripts is not trivial because the original

transcript of each RNA-seq read is unknown. The transcript abundance estimation

then aims to infer the proportions of the transcripts in the original transcriptome.

Essentially, the genomic locations of the read alignments are regarded as the obser-

vations. The transcript percentages are related to the observed reads through the

likelihood of a read being sampled from each transcript. This relation is particularly

crucial for the reads aligned to exons shared by multiple transcripts. The result of

this step will be the abundance of all transcripts reconstructed, solved by maximizing

the joint probability of all observed reads.
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Step 4: differential transcription analysis

With the set of transcripts reconstructed and their abundance estimated, the differ-

ence between two transcriptomes may be derived by explicitly comparing the diversi-

ties and expression profiles of the transcript sets. The abundance of every transcript

is normalized across sample groups and statistically tested for equivalence, resulting

in a list of genes with significant change of transcription from one condition to an-

other. This strategy may provide direct insights into differentiated transcripts, but

the accuracy of abundance estimation is often concerned.

1.3.2 The limitations of existing differential transcription analyses

Despite the large variety of computational methodologies developed and their success

in RNA-seq-based differential transcription studies, existing approaches often suffer

from unsatisfied robustness, limited accuracy, inefficient performance and poor re-

producibility. These issues partially result from methodological shortages and imple-

mentation weaknesses that are specific to individual approaches. The major concern,

however, is the deviation between the theoretical assumptions/requirements of the

approaches and the limitations by the short read sequencing technologies.

Fundamentally, the sequencing capabilities of current RNA-seq protocols still limit

the direct profiling of transcriptome using raw RNA-seq reads. Ideally, the sequencing

procedure should reveal the diversity and abundance of a transcriptome in a complete,

accurate and unbiased manner. However, the length of current RNA-seq reads is

insufficient. The transcripts in human transcriptome have a median length around

7



www.manaraa.com

2,500bp, a length much longer than an RNA-seq read (typically shorter than 100bp

for a single-end read or about 250bp for a paired-end read). Because transcripts in a

same gene may share a large amount of exonic sequences, it is highly ambiguous to

identify the original transcript for reads sampled from the shared exons. Hence both

the identity and the abundance of the transcripts may not be directly derived.

For example, current transcript level differential transcription analyses rely on ac-

curate transcript reconstruction and abundance estimation. Both tasks, nonetheless,

are known to be inaccurate and unstable, because current read length is not suffi-

cient to identify the original transcripts with controlled ambiguity. The downstream

differential analysis may perform poorly as a result.

In order to improve sensitivity and specificity, some differential analysis approaches

on alternative splicing events have been proposed to perform local estimation and

testing based on known alternative splicing patterns extracted from reference tran-

scriptome. But this strategy sacrifices the power to detect novel splicing isoforms and

often the generality to uncataloged or complex splicing patterns.

Moreover, the sequence file of every single sample may take up to tens of Gigabytes

even in its binary format, consisting of hundreds of millions of read records. At the

mean time, nowadays clinical RNA-seq datasets may grow larger and larger. For

example, the Cancer Genome Atlas (TCGA) breast cancer analyzing project has

sequenced more than 1,000 RNA-seq samples. This further requires a superb efficiency

in algorithm design and practical performance in addition to a high accuracy for any

analyzing approach. Existing approaches, however, typically work with one-to-one

comparison or datasets with small sample sizes (e.g., < 10).
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Envisioning the need of accuracy and scalability by large-scale RNA-seq studies,

this dissertation has placed the focus on the reference genome-based ab initio workflow

for differential transcription analysis, for the purpose of tracing from the massive

RNA-seq reads back to the differences among original transcriptomes.

1.4 The topic of this dissertation

The goal of this dissertation is to develop a novel computational framework for precise

transcriptome analysis on large-scale RNA-seq datasets. Starting with only the RNA-

seq read alignments on the reference genome, the framework aims to accurately recon-

struct the transcription models in the original samples, including both transcripts cat-

aloged in existing knowledge and novel transcripts, and to highlight the transcription

events that are differential across samples/groups. The developed methodologies are

expected to alleviate the computational infeasibility that impairs existing transcript-

based approaches, which leads to weaknesses in sensitivity, specificity and efficiency.

Envisioned the advent of large, complex clinical RNA-seq datasets, the work will

also explore the solutions that leverage information from hundreds or thousands of

samples, improve computational scalability, and resolve complex transcription signals

due to noise and errors in sampling and alignment. The application of the frame-

work developed in this dissertation may provide insights into patterns of transcription

regulations associated with cell development and diseases.
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1.5 Contributions of this dissertation

We have developed a novel ab initio framework for transcriptome analysis on large-

scale RNA-seq datasets, working from raw RNA-seq reads and requiring only a ref-

erence genome. Leveraging biological interpretability and computational feasibility,

this framework provides accurate and robust detection of differential transcription

at the level of alternative splicing events, events that capture differences between

transcript isoforms. In this way, this approach circumvents the computational infea-

sibility of full-length transcript reconstruction and estimation. On the other hand,

this data-driven approach relies on neither transcript annotation nor pre-determined

alternative splicing template, and hence frees the limitation on known events, known

category and low complexity that all restrict existing splicing event-based methods.

The completion of this dissertation may contribute to the transcriptomics research

in the following aspects.

• A probabilistic scheme has been developed for the accurate alignment of paired-

end RNA-seq reads. Unlike typical aligners which determine the most probable

alignments relying on presumed co-location of mate-pairs, the developed scheme

reconstructs the actual unsequenced segments between the end reads, based on

the splice structure derived from all the sampled reads. The full transcript frag-

ment alignments are inferred maximizing the joint probability of all reads and

splice junctions. In addition to resolving ambiguous short read mapping, these

fragment alignments enable higher coverage on the transcriptome and more

accurate splice junction detection. This alignment algorithm can be further
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extended to fusion junction validation, demonstrated by applications in breast

cancer RNA-seq datasets.

• A precise and efficient ab initio pipeline has been developed for alternative

splicing-level transcriptome profiling and differential transcription analysis, re-

lying on only RNA-seq read alignments. This pipeline includes a suite of novel

algorithmic and statistical methods, featuring a graph theory-based algorithm

for alternative splicing events discovery, an inference procedure for splicing iso-

form abundance estimation and a non-parametric significance test for evaluation

of differential transcription between/among groups. The transcriptome repre-

sentation using alternative splicing modules, in particular, provides a unique

strategy in genome-wide transcription analysis distinguished beyond the exist-

ing methodologies. Through extensive evaluation on both simulated and real-

world datasets, this pipeline has demonstrated superior sensitivity and speci-

ficity utilizing current short-read RNA-seq technologies.

• Classical differential transcription tests are based on the assumption that indi-

viduals in each sample group have the same distribution of transcript profile,

which may not hold in clinical data due to biological heterogeneity among pa-

tients. In complement to the group-wise differential analysis, we have also

explored the application of data mining techniques in gene transcription pat-

tern discovery without relying on predefined sample groups. A non-parametric

clustering scheme has been developed on the basis of sample-specific transcrip-

tion profiles, accompanied with a novel statistical scoring criteria for informative
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cluster selection. Applied on clinical datasets when within-group biological vari-

ation is significant and when existing grouping may not well characterize the

individuals, this clustering scheme has demonstrated the ability to automati-

cally find subgroups of samples that exhibit consistent transcription patterns.

This provides a unique solution that may help highlight biomarkers differenti-

ating disease subtypes and help refine existing subtype definition.

• We have identified differential splicing patterns potentially associated with

breast cancer subtyping, though successful application on the Cancer Genome

Atlas (TCGA) breast cancer dataset. Leveraging more than 800 RNA-seq sam-

ples, this framework has demonstrated the efficacy of joint transcription analysis

on large-scale clinical RNA-seq datasets. Novel solutions have also been pro-

vided to the challenges such as computational scalability, data representation

and transcriptome reconstruction from complex, noisy read alignments.

• The open-source software packages for the algorithms developed in this frame-

work are released and actively maintained, publicly available to the research

community.

Copyright c© Yin Hu, 2013.
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Chapter 2 Biological background

In this chapter, we will review the biological background and the technology platform

of the differential transcription analyzing methodologies.

2.1 The genome in living organisms

The hereditary information of a living organism is stored in the molecule named de-

oxyribonucleic acid (DNA). This hereditary information contains the complete set of

genetic codes instructing the development and functioning of the organism. In human

cells, the DNA molecules are known for their double helix structure (Figure 2.1). The

two strands are two long biopolymers running in opposite directions to each other,

with the direction specified by the 5’ end and the 3’ end. Each strand is constituted

by units named nucleotides. There are four types of nucleotides distinguished by

their component nucleobase, denoted as G, A, T and C (guanine, adenine, thymine

and cytosine), respectively. In this anti-parallel structure, the two strands are further

bound together by pairing of corresponding nucleobases – A bonds only to T and C

bonds only to G. The pair of two nucleotides binding together across the two strands

is called a base pair (bp). The DNA sequence in human genome, for example, consists

of more than 3× 109 base pairs. The DNA sequence of nucleotides is the actual code

that keeps the genetic information and is duplicated through complementary read

pairing.

In cells of eukaryotic organisms, the most of the DNA is located inside the cell
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nucleus, organized into structures called chromosomes. For human, for example,

there are 23 pairs of chromosomes, each consisting of 50 million to 250 million base

pairs. The functional regions in DNA sequences are further divided into hereditary

units named genes. Every gene corresponds to a specific location on a chromosome

and is typically responsible for a particular characteristic in the organism. The are

approximately 20,000 genes for human. The DNA sequence of a gene contains the

regulatory sequences that control the expression of the gene, as well as sequences that

hold the information for cell differentiation, cell functioning and heredity. The term

genome is then used to refer to the complete set of genetic information, including

sequences of genes that contain genetic code and other functional but non-coding

sequences.

2.2 The mRNA transcriptome

Within living organisms, proteins are the molecules that perform actual functions,

such as catalyzing metabolic reactions, responding to stimuli and transporting molecules.

Different proteins differ primarily in their sequence of amino acids, which is dictated

by the nucleotide sequence of their genes. A large variety of protein has been dis-

covered in the human body, estimated around 100,000. This size is more than five

times the number of genes that code for the proteins. The great difference between

the diversity of genes and that of proteins is due to a process named transcription.

The genetic code in the DNA sequences is not directly used for protein synthesis,

but first through the transcription from DNA to ribonucleic acid (RNA). An enzyme

called RNA polymerase first recognizes and binds a promoter region of the gene,
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Figure 2.1: The genome in an eukaryotic cell. In eukaryotic organisms, such as
animals, plants, fungi and protists, most of their DNA is stored inside the cell nucleus
and is typically organized in chromosomes. Every gene is a piece of sequence on a
chromosome, typically responsible for a particular characteristic in the organism.
(Figure partially adapted from Wikipedia [Wik].)

unchains the double helix DNA structure, reads one specific strand from 3’ to 5’

and synthesizes the RNA from 5’ to 3’. The synthesized RNA then has a nucleotide

sequence matching the DNA sequence of the genome (the strand from 5’ to 3’),

except for that T is replaced by U. This single-stranded RNA molecule is known as

the precursor mRNA (or pre-mRNA, primary transcript)

Not all nucleotides in the sequence of a pre-mRNA will constitute the genetic codes

for protein synthesis. Sequences that are not responsible for the specification of amino
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acids should be removed and not remain present within the final mature mRNA

molecules. This post-transcriptional modification for the pre-mRNA molecules is

called splicing. The removed sequences are named introns. The rest sequences are

called exons and will be joined together (in transcription order) into the final mature

mRNA after RNA splicing. Each mRNA molecule is also called a transcript or

isoform. The procedure is shown in Figure 2.2.

Transcript a

GTGCATCGTACTTGAGTGGAGAAGGGTTACAGAAGTT

CACGTAGCATGAACTCACCTCTTCCCAATGTCTTCAA

DNA

T
ra

n
s
c
ri
p

ti
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n

mRNA

transcript

T
ra

n
s
la

ti
o

n

Protein

Gene

5'

3'
Template strand

Coding strand

Exon E1 Intron

V H L E K VE

GUGCAUCUGGAGAAGGAAGUU GUGCAUCAAGUU

Exon E2 Exon E3Intron

Transcript b

Amino acid sequence

Alternative splicing

V H Q V

5'

3'

pre-mRNA
GUGCAUCGUACUUGAGUGGAGAAGGGUUACAGAAGUU

Figure 2.2: The alternative splicing and transcription. The DNA sequence of a gene
is first copied to pre-mRNA, with all T’s replaced by U’s. The pre-mRNA is then
spliced, removing introns and concatenating exons, to make mRNA transcript. One
gene may code for multiple mRNA transcripts through alternative splicing. Different
sets of exons, for example, E1E2E3 and E1E2, may be retained to form different
transcripts, transcripts a and b. Alternative transcripts will typically lead to different
amino acid sequences. As a result, the produced proteins will have different amino
acid compositions and structures, hence varied functions.

In many genes, the way to splice the pre-mRNA is not unique. The exons to

be retained in the final mRNA are determined by the splice sites, regulated and
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selected by trans-acting splicing activator and splicing repressor proteins. The intron

regions are typically defined by consensus sequences in eukaryotic cells. An RNA

and protein complex, known as the spliceosome, then binds to the specific consensus

sequences [Clark, 2005]. The binding sites will then determine the ends of the intron

to be spliced out and define the ends of the exon to be retained [Matlin et al., 2005].

Thereafter, the spliceosome will cleave the 5’ end of the intron from the upstream

exon and cleave the 3’ end of the intron from the downstream exon. The two exons

are joined and the intron is then released. [Lopez, 1998, Black, 2003] This process in

which particular exons of a gene may be retained in or removed from the final mRNA

transcripts of this gene is called alternative splicing (Figure 2.2). Through alternative

splicing, the exonic sequences of one gene may be reconbined into different mRNA

transcripts, hence one gene may code for multiple proteins. Due to different amino

acid sequences, these proteins typically have different functions. In human genome,

alternative splicing happens in more than 95% of multi-exon genes [Sultan et al.,

2008, Wang et al., 2008, Pan et al., 2008, Kwan et al., 2008].

There are seven commonly observed forms of alternative splicing events (Fig-

ure 2.3). The most basic case is exon skipping, also known as cassette exon, in which

one or multiple exons are alternatively included or excluded in the transcript. In mu-

tual exclusive exons, each alternative exon is retained in one transcript after splicing.

But no transcript may have both of the exons. For some consecutive exons connected

by a splice junction, there may be an alternative sequence defining different bound-

aries of the 5’ exon (donor side) or the 3’ exon (acceptor side). Alternative splice

junctions will then exist from alternative splice sites. In intron retention, a sequence
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Figure 2.3: The common forms of alternative splicing events. The splice junctions
indicate how the exons in the gene may be concatenated into different transcripts.
The resulted transcripts share same blue exons but are distinguished by alternative
exons colored yellow.

may either be retained in the mRNA transcript as an exon or spliced out as an in-

tron. Furthermore, transcripts may also start or end at different exons, initiating

or ending the transcription at different sites. More complicated alternative splicing

events may be observed, combining the basic forms or developing more complex exon

inclusion/exclusion patterns.

The totality of all mRNA transcripts transcribed from the genome within a func-

tioning cell is referred to as the mRNA transcriptome, characterized by the diversity

of the transcripts present and their individual quantities.

After transcription, the produced mRNA transcripts then serve as the templates

for protein synthesis, in a process called translation. The nucleotide sequence of the
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mRNA transcripts is decoded, linking specific amino acids into a chain. This amino

acid chain will later fold into an active protein that carries functions in the cell.

2.3 Differential transcription

As the union of all protein synthesis templates, the mRNA transcriptome is often

regarded as a precursor for the entire set of proteins that may be produced from the

genome. The diversity of the mRNA transcriptome correlates with the diversity of the

proteins. More importantly, the abundance of the mRNA transcriptome, the quantity

of each individual transcript in the cell, may further associate with the expression

levels of the proteins thus may have direct impact on the cell’s function.

The diversity and abundance of transcripts transcribed from the genome are basic

characteristics of a cell at a particular time under a specific condition, and are known

to vary in response to cellular differentiation and maturation as well as environmental

factors and disease. Comparing the transcriptomes may highlight the genes and

transcripts that are being actively expressed, or vice versa. For example, transcripts

whose corresponding proteins have functions related to cell proliferation may have

shifted expression at different stages of cell development. Therefore, the difference

between mRNA transcriptomes sampled at these stages may provide insight into the

functional effects of cell differentiation and cell life cycles [Wang et al., 2008, Trapnell

et al., 2010].

On the other hand, because the regulation of transcription controls the intensity of

particular proteins, abnormalities in alternative splicing and the resulted transcripts

often lead to diseases [Faustino and Cooper, 2003, Tazia et al., 2009]. For example,
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associations have been reported between irregular alternative splicing and heart dis-

eases [Xu et al., 2005], muscle diseases [Poulos et al., 2011], Parkinson disease [Fu

et al., 2013], neurological diseases [Yap and Makeyev, 2013, Poulos et al., 2011], etc.

In addition, the alternative splicing in cancer-related genes often has important roles

in cell proliferation and tumor suppression, further associated with various types of

cancer such as breast cancer [Tammaro et al., 2012], ovarian cancer [Wang et al.,

2010b], lung cancer [Pio and Montuenga, 2009] and prostate cancer [Haile and Sadar,

2011]. Therefore, the difference between mRNA transcriptomes sampled from healthy

and diseased cells may provide insight into the functional consequences of disease, as

well as help to identify biomarkers that can classify different disease types [Wang and

Cooper, 2007].

The topic of this dissertation then focuses on the differential transcription anal-

ysis, the detection of differences between the transcriptomes at given times or condi-

tions.

2.4 Traditional approaches for transcriptome study

Differential gene expression analysis is the first attempt to correlate the function of

cells with genes active or inactive. The quantitation of the genes’ expression levels

may further allow downstream pathway analyses to seek target genes for diseases.

DNA Microarray technology [Clark et al., 2002, Russo et al., 2003] has been used as

a powerful tool to quantitatively measure the expression levels of thousands of genes

simultaneously, enabling the comparison of gene expression among multiple samples.

The microarray technologies rely on the hybridization between two DNA strands,
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the specific pairing of complementary nucleic acid sequences. A large collection of

microscopic DNA probes is attached to a solid surface, called an array. Each probe

(feature) encodes a specific DNA sequence that may identify a gene or other DNA

element, and the identify of the probes is known by their position. A nucleic acid sam-

ple (target) is fluorescently labeled, hybridized to the probe sequences, and washed

after hybridization. A higher number of complementary base pairs makes tighter

bonding between two nucleotide sequences. The non-specific bonding sequences may

be washed off. The target sequences that bind will generate a signal. The rela-

tive expression of a genes in the sample may then be quantified by measuring the

intensity of the signal at corresponding probe, which correlates with the amount of

target sample binding to that probe. [National Center for Biotechnology Information,

National Human Genome Research Institute]

Transcript-level differential expression has been receiving more and more interests,

at a higher resolution, than the differential gene expression analyses. The microarray

technologies were then applied on exons, called exon arrays [Okoniewski and Miller,

2008, Xi et al., 2008], to detect differences in the expression of known gene exons,

which may reveal expression of individual transcripts that retains or skips the exon.

In addition to microarrays, molecular techniques like CAGE (Cap analysis gene

expression) [Shiraki et al., 2003] and SAGE (Serial analysis of gene expression) [Vel-

culescu et al., 1995] have also been developed to determine the transcription start

position and transcript expression, provided the transcript sequence. Small frag-

ments of transcripts are extracted and sequenced to generate a set of short nucleotide

sequences (tags) that may identify their original transcripts. With the guidance of
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a reference genome the expression of the transcripts may be measured through the

observed counts of the tags.

The common limitation of these traditional technologies is the requirement of

pre-known sequence, allowing analyses only on annotated genes/exons/transcripts.

The microarray technology is also affected by the background noises [Tu et al., 2002,

Klebanov and Yakovlev, 2007] and the limited dynamic range of expression levels

(typically up to 102) [Wang et al., 2009], degrading the accuracy of the measurement.

2.5 The revolutionizing RNA-seq technology

More recently, high-throughput sequencing methods such as RNA-seq [Wang et al.,

2009, Pan et al., 2008, Wang et al., 2009] have been able to accurately record short

sequences of nucleotides sampled from millions of mRNA molecules in the transcrip-

tome, and thereby are capable of observing samples from known as well as unknown

transcripts. Through massively sequencing the whole transcriptome, RNA-seq has

made possible an accurate and comprehensive snapshot of the mRNA transcriptome.

For example, Illumina’s Hiseq2000 can produce up to 200 million reads in one lane

in one sequencer run. The large number of molecules randomly sampled provide the

potential to not only characterize the diversity of transcripts present in the transcrip-

tome but also accurately estimate the relative abundance of transcript isoforms.

In a typical RNA-seq experiment, the mRNA molecules in the target transcrip-

tome will be first synthesized into cDNA, followed by a process of random fragmen-

tation that cuts the full-length mRNA transcripts into shorter fragments. A size

selection process will then be performed, and fragments with a proper size (typi-
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Figure 2.4: An illustration of the high-throughput mRNA sequencing. (a) The steps
of a typical RNA-seq experiment. The RNA molecules will be synthesized into cDNA,
fragmented and size-selected, before getting sequenced from one end or both ends.
(b) The discovery of exons and exon-exon splice junctions using RNA-seq short reads.
Directly sampling on the mRNA transcripts, RNA-seq needs no guidance from pre-
known sequences and may reveal splice junctions as well as transcript isoforms cat-
aloged or novel, well-abundance or lowly-expressed. (Figure partially adapted from
Wikipedia [Wik].)
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cally from 300bp to 500bp) will be selected for sequencing. The direct output of an

RNA-seq experiment, afterward, will be tens or hundreds of millions of short reads,

typically of length less than 100nt, whose sequences are read from the transcript

fragments in the prepared cDNA library. In order to improve sampling coverage at

the same sequencing capability, the paired-end sequencing strategy has been widely

adopted, which sequences both ends of a transcript fragment. The additional pairing

information can help determine the entirety of the fragment, benefiting the analyses

of transcriptome through the guidance of, for example, read alignment and original

transcript identification. (Figure 2.4a)

Unlike traditional approaches which may only work with known genes or known

transcripts, RNA-seq does not rely on any pre-specified sequences or pre-determined

templates. It makes possible the discovery of previously uncataloged exons and splice

junctions and hence novel transcripts and genes (Figure 2.4b). Compared to microar-

rays whose detection is limited by the scope of the probes, the transcript fragments

sequenced by RNA-seq, in principal, are randomly sampled, which allows an unbiased

and comprehensive survey of the transcriptome. Furthermore, the broad dynamic

range of RNA-seq enables the analysis not only on abundant transcripts but also

transcripts that are barely expressed, providing a more accurate expression measure-

ment than microarrays.

Copyright c© Yin Hu, 2013.
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Chapter 3 A Probabilistic Model for Aligning Paired-end RNA-seq Data

3.1 Introduction

High-throughput sequencing technologies are providing unprecedented visibility into

the mRNA transcriptome of a cell. In cancer, alternative splicing and gene fusion

events [Maher et al., 2009, Berger et al., 2010] are common changes observed in the

mRNA transcriptome. Cancer specific splicing events are promising biomarkers and

targets for diagnosis, prognosis, and treatment purposes. Recently, several compu-

tational methods [Trapnell et al., 2009b, Au et al., 2010] have been developed to

identify splicing events using RNA-seq data. These methods align RNA-seq reads

to the reference genome rather than to a transcript database, making it possible to

identify novel splicing events via gapped alignment of reads to the genome.

New protocols and sequencing methods have expanded the length and type of

RNA-seq reads, enabling more accurate characterization of the splices present in the

transcriptome. A single read may constitute 35 – 100 consecutive nucleotides of a

fragment of an mRNA transcript. The paired-end read (PER) protocol sequences

two ends of a size-selected fragment of an mRNA transcript and reports the results

as a pair. The fragment length is typically around 200bp but may vary according to

different PER protocols. In our experiment, for example, the expected size of mRNA

fragments are around 182bp (±40bp). Both ends of the fragment are sequenced to
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at least 35bp in length.

This chapter focuses on predicting the alignment of an entire PER fragment, start-

ing from the alignments of its end reads and using the alignments of other overlapping

PER end reads to predict an overall alignment consistent with the expected length of

the fragment. Since a PER fragment can be longer than single reads sequenced with

today’s RNA-seq technology, achieving such alignments may significantly increase the

effective transcriptome coverage. Longer alignments also decrease alignment ambigu-

ity in regions with genome repeats.
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Figure 3.1: Left: A fragment of an mRNA transcript exhibiting gene fusion between
exon B in gene 1 and exon G in gene 2 is sampled by six paired-end reads. The
alignment of the transcript to the reference genome as well as the alignment of the
PERs to the genome is shown. The unsequenced segments of PERs can not readily
be aligned to the genome because of unknown intervening splicing events including,
in this case, the fusion junction. Right: An example of the distribution of distance
in genomic coordinates between paired end-read alignments generated from 2x35bp
PER data. While the majority of distances fall within the normal distribution for
mate-pair distance on mRNA fragments, a significant portion of the distances are far
beyond the expected range, indicating potential splicing events.

A unique challenge in PER fragment alignment is that the expected distance be-

tween the two end reads within the trancript fragment, known as mate-pair distance,

can be very different from distance between the two end reads when aligned to the

genome. This can happen when the two ends fall in different exons, so that their sep-
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aration in genomic coordinates includes one or more intervening introns that are not

present in the transcript (Figure 3.1 left). This effect is illustrated as a long tail in the

mate-pair distance distribution when aligned on the genome (Figure 3.1 right). Re-

solving the discrepancy between the expected mate-pair distance and the paired-end

separation on the genome is not trival. RNA-seq aligners including TopHat [Trapnell

et al., 2009b] and SpliceMap [Au et al., 2010] align PERs using heuristics. When

the distance between end alignments is substantially longer than the expected mate-

pair distance, TopHat reports the closest end alignment for a PER, while SpliceMap

considers PERs with ends mapped within 400,000bp on the genome. While both

heuristics have meaningful biological motivations, neither method predicts or vali-

dates the PER alignment. Since both approaches discard PER alignments that span

a very long interval or cross chromosomes, neither of them is capable of finding long

range splicing or gene fusion events.

In this chapter, we have proposed a new probabilistic framework for aligning

RNA-seq PERs to a reference genome, without relying on transcript databases. Our

goal is to discover both short range splice junctions and long range splice/fusion

junctions through accurate mapping of PER end reads as well as the unsequenced

middle portion. Our approach starts by building a compact splice graph to represent

all putative splicing events, regardless of the intron sizes, derived from individual end

read alignments. An expectation-maximization algorithm is then applied to identify

the most probable path in the graph that connects the two ends of a PER based on

the empirical distribution of the mate-pair distances. This in turn is used to infer the

significant splice junctions.
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Our approach was applied to RNA-seq data sets of 2x35bp PER reads from MCF-

7 and SUM-102, two well known breast cancer cell lines. PER fragment alignment

increased the coverage three fold compared to the alignment of the end reads alone,

and increased the accuracy of splice detection. The accuracy of the EM algorithm

in the presence of alternative paths in the splice graph was validated by qRT-PCR

experiments on 8 exon skipping alternative splicing events. PER fragment alignment

with long range splicing confirmed 8 out of 10 fusion events identified in the MCF-7

cell line in an earlier study by [Maher et al., 2009].
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2. Span splice junction

3. Span trans-chromosome fusion junction

4. Span trans-strand fusion junction

Figure 3.2: An illustration of a PER fragment alignment to the reference genome.
The mRNA transcript is shown at the top, the paired-end read sequence is shown in
the middle, and the alignment of the paired-end read to the genome is shown at the
bottom. Four cases are shown: (1) concordant with mRNA alignment distance, (2)
crossing a splice junction, (3) crossing trans-chromosome fusion junction, (4) crossing
trans-strand chimeric junction.
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3.2 Mapping Individual Reads

The alignment of RNA-seq PERs starts with the alignment of their individual end

reads. MapSplice [Wang et al., 2010a] was used to map these end reads to the

reference genome, generating both the read alignment and putative splice and fusion

junctions.

MapSplice finds both exonic and spliced alignments of RNA-seq reads to a ref-

erence genome without any dependence on annotations or structural features of the

genome. MapSplice operates by partitioning RNA-seq reads into short segments (18

– 25bp) that are aligned directly to the reference genome. Segments that can be

aligned in this fashion are likely to be transcribed from exonic regions. Segments

that cannot be aligned in the first step may contain a splice junction that is located

by a search extending from aligned neighboring segment(s). In general, each segment

may end up with multiple alignments that exceed some alignment quality threshold

σ. A merge phase constructs candidate alignments for each read, by combining con-

sistent alignments of its segments. Splice junctions are given a confidence value by

considering the quality and diversity of all candidate alignments that include the junc-

tion. Finally the candidate alignments for a read are restricted to those in which the

overall alignment quality and the confidence of any included splice junctions exceeds

σ. The alignment of end reads by MapSplice was performed globally, i.e. without

constraints on the proximity or strand of the mate-pair alignments in genomic co-

ordinates. Given a PER (xα, xβ), the alignments of xα and xβ fall into one of the

following four categories.
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1. xα and xβ are mapped onto the same chromosome and the same strand, and the

mapped distance on the genome is close to their expected mate-pair distance

(as shown in Figure 3.2(1)).

2. xα and xβ are mapped onto the same chromosome and the same strand with a

distance much longer than the expected mate-pair distance. This indicates the

xα and xβ span distinct exons (as shown in Figure 3.2(2)). When the distance

is larger than 50,000bp, the two reads are assumed to be from different genes.

Similar rules were used by Maher et al. [2009].

3. xα and xβ are mapped onto different chromosomes. This indicates a potential

trans-chromosome fusion event (as shown in Figure 3.2(3)).

4. xα and xβ are mapped onto different strands, either of a same chromosome or of

different chromosomes. This indicates a potential trans-strand chimeric event

(as shown in Figure 3.2(4)).

In the first category, the alignment of a PER fragment can easily be determined

since their separation is concordant with the expected mate-pair distances. For the re-

maining categories, the alignment of the complete PER fragment requires knowledge

of the intervening exons and splicing structure to reconstruct plausible alignments.

The set of splice junctions can be inferred from the spliced alignment of PER end

reads. Reads 1 and 3 in Figure 3.1 left are examples of splice junction reads, while

read 5 is an example of a fusion junction read. However, due to alternative splicing,

multiple splicing paths may exist from xα to xβ . Furthermore, the mapping of in-
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dividual end reads may have multiple alignments to the genome due to repeats and

homologous genes. To address these problems, we propose a maximum likelihood

approach to disambiguate the PER alignments, detailed in the next section.

3.3 Probabilistic Framework

3.3.1 Graphical model and Notations

The spliced alignments of individual end reads result in a putative set of splice and

fusion junctions. These junctions can be used to build a splice graph G = 〈V,E〉 to

reflect the relation between the genome and transcript fragments. Within the splice

graph G, each node v ∈ V corresponds to a base on the reference genome. The nodes

are connected by directed edges in the direction of the transcription. There exist

two types of directed edges. The first type represents the connections between two

adjacent bases on the same chromosome. The second type of edge corresponds to

splice or fusion junctions, and skips around the spliced-out portion of the genome.

Let D be the set of RNA-seq PERs. Let xα and xβ be the two end reads of

transcript fragment x, 〈xα, xβ〉 ∈ D. We denote the unsequenced segment of x as xγ .

Therefore, the entire PER fragment of x is the concatenation of xα, xγ and xβ and

must be arranged in precisely this order, i.e., x = 〈xα, xγ , xβ〉. Figure 3.3 illustrates

the alignment of a PER based on the constructed splice graph. We are interested in

predicting the alignment of entire fragment x including unsequenced xγ as well as xα

and xβ.

Let Πα
x and Πβ

x be the sets of valid alignments of end reads xα and xβ , respectively.
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The set of putative end read alignments of a PER contains all the unique combinations

of the mapped locations of xα and xβ , i.e.,

Πα,β
x = {〈πα

x , π
β
x〉|π

α
x ∈ Πα

x , π
β
x ∈ Πβ

x}.

Determining the alignment of xγ is not straightforward since it is not sequenced.

Its alignment might be predicted given the mapping of the end reads πα
x and πβ

x

and the splicing paths connecting them. We use Π
γ|α,β
x to denote the set of candidate

alignments of xγ given πα
x and πβ

x , each of which corresponds to a unique concatenation

of exonic regions by following a particular splicing path. A putative alignment of a

PER x, πx, therefore, is equivalent to an acyclic path that starts with the first base

of πα
x , passes πγ

x and ends with the last base of πβ
x . Formally, given the set of end

read alignments Πα,β
x , the set of candidate alignments of x, Πx, is

Πx = {πx|π
α,β
x ∈ Πα,β

x , πγ
x ∈ Πγ|α,β

x }.

Problem Definition: Let Π = {πx|〈xα, xβ〉 ∈ D} be the set of candidate frag-

ment alignments for all PERs in D. Our goal is to determine an alignment for each

PER, Π̂, that maximizes the likelihood of the alignment of all the PERs in D, i.e.,

Π̂ = argmax
Π

∏

x∈D

P (x|Π). (3.1)

3.3.2 Probability definitions

Probability of a PER: The probability of a PER x is determined by its end read

alignments Πα,β
x . By summing up the probability that a read alignment πα,β

x ∈ Πα,β
x
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Figure 3.3: An illustration of the framework proposed in Section 3.3 applied to the
example in Figure 3.1. The input is a set of RNA-seq PERs that have both ends
aligned to the reference genome (top row). A splice graph can be constructed by
taking each base as a node and connecting adjacent bases in the same chromosome
as well as bases that constitute a potential splice junction or fusion junction (second
row). A candidate alignment of a PER is a path in the splice graph from its start
position to end position with the proper orientation.

is the true alignment π̂α,β
x at each candidate alignment in Πα,β

x , the probability of x

can be computed as

P (x) =
∑

π
α,β
x ∈Πα,β

x

P (x, π̂α,β
x = πα,β

x )

=
∑

π
α,β
x ∈Πα,β

x

P (x|π̂α,β
x = πα,β

x ) · P (π̂α,β
x = πα,β

x ).

Here P (π̂α,β
x = πα,β

x ) is the expected probability that x is aligned to πα,β
x . It is

estimated at the expectation step of EM algorithm described in Section 3.3.3. The

probability of x’s alignment given πα,β
x , P (x|π̂α,β

x = πα,β
x ), is determined by

• the probability of the accurate alignments for both end reads, xα and xβ;

• the probability of the alignment for unsequenced portion, xγ .

Mathematically, assuming the assessment of xα, xβ and xγ are independent,

P (x|π̂α,β
x = πα,β

x ) = P (xα|π̂
α
x = πα

x ) · P (xβ|π̂
β
x = πβ

x)

·P (xγ|π̂
α,β
x = πα,β

x ).
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We first determine P (xγ|π̂
α,β
x = πα,β

x ), the probability of xγ given πα,β
x . xγ is the

unsequenced portion of x. Its alignment, πγ
x , would be one of the putative splicing

paths connecting πα
x and πβ

x , assuming the necessary splice junctions are present.

Since the length of πγ
x corresponds to the mate-pair distance, for each putative align-

ment πγ
x , the probability P (xγ|πα,β,γ

x ) may be determined by the length of πγ
x in the

empirical distribution of the mate-pair distances Nd. Here we denote it as Pd(π
γ
x).

Therefore, the probability of xγ given end read alignment πα,β
x can be expressed as

P (xγ|π̂
α,β
x = πα,β

x )

=
∑

π
γ
x∈Π

γ|α,β
x

P (xγ , π̂
γ
x = πγ

x |π̂
α,β
x = πα,β

x )

=
∑

π
γ
x∈Π

γ|α,β
x

P (xγ |π̂x = πα,β,γ
x ) · P (π̂γ

x = πγ
x |π̂

α,β
x = πα,β

x )

=
∑

π
γ
x∈Π

γ|α,β
x

Pd(π
γ
x) · P (π̂γ

x = πγ
x |π̂

α,β
x = πα,β

x )

where P (π̂γ
x = πγ

x |π̂
α,β
x = πα,β

x ) is the probability of an alignment πγ
x given the end read

alignment πα,β
x . We will determine P (π̂γ

x = πγ
x |π̂

α,β
x = πα,β

x ) during the maximization

step of EM algorithm described in Section 3.3.3.

The probability of the sequenced end reads, P (xα|π̂α
x = πα

x ) and P (xβ|π̂β
x = πβ

x)

should be evaluated first based on their alignments, i.e., the probability of an align-

ment is not erroneous given their sequence similarity to the reference genome and

their base call quality score (Li et al., 2008b), denoted as Pq(xα|πα
x ) . In case a read

spans one or more splice junctions or fusion junctions, the probability of a read is

also dependent upon the joint probability of these junctions. Let Λ(πα
x ) be the set of

junctions spanned by the end read alignment πα
x . Considering both the spliced align-
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ment and the matching quality, the probability of an accurate end read alignment

can be calculated as

P (xα|π̂
α
x = πα

x )

=

{

Pq(xα|πα
x ) , Λ(πα

x ) = ∅;
Pq(xα|πα

x ) ·
∏

λ∈Λ(πα
x )
P (λ) , otherwise.

The probability P (xβ|π̂β
x = πβ

x) can be calculated similarly.

Splice Junction Probability: Splice junctions are derived from the spliced

alignment of end reads to the reference genomes without relying on existing anno-

tations. Such approach enables us to discover novel junctions but some of these

junctions might be false positives. For example, if a junction has few and/or low

probability PER supports, it may be spurious. On the other hand, a junction is

likely to be true if it is crossed by at least one PER alignment with high probability.

Therefore, we may evaluate the probability of a junction based on the set of PERs

crossing it.

Mathematically, let Π(λ) be the set of PER alignments going through the junction

λ,

Π(λ) = {πx|λ is crossed by πx}.

For each alignment πx = πα,γ,β
x in Π(λ), the junction λ may be crossed in a spliced

alignment of either πα
x and πβ

x or be part of the splicing path of πγ
x .

The probability of the junction λ can be expressed as the probability that there is
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at least one PER alignment πx in Π(λ) supporting the junction, i.e.,

P (λ) = 1−
∏

πx∈Π(λ)

(1− P (x, π̂x = πx))

= 1−
∏

πx∈Π(λ)

(1− P (x|π̂x = πx)

·P (π̂x = πx))

where

P (x|π̂x = πx) = P (xα|π̂
α
x = πα

x )P (xβ|π̂
β
x = πβ

x)P (xγ|π̂
γ|α,β
x = πγ|α,β

x ),

i.e., the probability that x is true at the alignment πx = πα,γ,β
x .

In the next section, we will discuss an expectation maximization approach that

determines the alignment for each PER maximizing the probability of all PERs as in

Equation 3.1.

3.3.3 Probability Estimation

In this section, we apply the EM algorithm [Dempster et al., 1977, Wu and Jeff, 1983]

to maximize the log likelihood of all the sampled PERs. The dependency relationships

of all the variables are summarized in Figure 3.4.

Initialization

The probability of a PER is dependent upon the joint probability of the junctions

within the span of the PER end read alignment. And the probability of a junction

is calculated based on the probabilities of the PERs supporting the junction. In

order to start the maximization, we initiate the probability of each junction as 1, and

calculate the probability of each PER alignment.
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At the alignment πα,β
x , the probability that the PER x takes πγ

x as the unsequenced

segment alignment is initiated with the expectation

P (π̂γ
x = πγ

x |π̂
α,β
x = πα,β

x )

=
P (xγ , π̂

γ
x = πγ

x |π̂
α,β
x = πα,β

x )
∑

π̃
γ
x∈Π

γ|α,β
x

P (xγ, π̂
γ
x = π̃γ

x |π̂
α,β
x = πα,β

x )
.

Meanwhile the expected probability that πα,β
x is true is estimated by

P (π̂α,β
x = πα,β

x ) =
P (x|π̂α,β

x = πα,β
x )

∑

π̃
α,β
x ∈Πα,β

x
P (x|π̂α,β

x = π̃α,β
x )

. (3.2)

Then the probability P (x) of every PER x and the probability P (λ) of every

junction λ can be computed based on the initial estimation.

Maximization and Expectation

The likelihood of the data is based on the probability P (π̂γ
x = πγ

x |π̂
α,β
x = πα,β

x ). We

define the function Q(D,P (π̂α,β
x = πα,β

x )),

Q(D,P (π̂α,β
x = πα,β

x ))

=
∑

x∈D

∑

π
α,β
x ∈Πα,β

x

P (π̂α,β
x = πα,β

x )log
P (x, π̂α,β

x = πα,β
x )

P (π̂α,β
x = πα,β

x )
.

The EM algorithm performs maximization and expectation iteratively. At each

iteration, hill climbing algorithm is applied to estimate P (π̂γ
x = πγ

x |π̂
α,β
x = πα,β

x )

for every PER x such that Q(D,P (π̂α,β
x = πα,β

x )) is maximized. The proof that

the maximization of Q(D,P (π̂α,β
x = πα,β

x )) will lead to the maximization of l(D) is

included in the supplemental materials. At the end of each iteration, the probability

that PER x is mapped to alignment πα,β
x is updated by taking the expectation, as
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Figure 3.4: An illustration of the dependency relationship among the alignments of
end reads, the alignments of unsequenced segments and junctions during the inference
of the PER alignments. Within this probabilistic model, the probability of a junction
is dependent on the PERs that support the junction, and the probability of a read
alignment is dependent on the joint probability of the junctions spanned by the read
alignment, as indicated with the red arrows. Taking PERs as input, our method aims
at identifying the most probable alignments for every mate-pair x.

calculated in Equation 3.2. The proof of correctness for the EM approach is included

in the supplemental materials.

Convergence of the EM algorithm

Abbreviate P (π̂γ
x = πγ

x |π̂
α,β
x = πα,β

x ) as θ. Let q(πα,β
x ) be a “probability variable”

about the event that x is mapped to alignment πα,β
x . The function Q is defined as

Q(θ, q,D)

=
∑

x∈D

∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )log

P (x, π̂α,β
x = πα,β

x |θ)

q(πα,β
x )

.

We claim that the function Q has the following two properties.
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Property 1.

l(θ,D) ≥ Q(θ, q,D)

proof

l(θ,D) =
∑

x∈D

log
∑

π
α,β
x ∈Πα,β

x

P (x, π̂α,β
x = πα,β

x |θ)

=
∑

x∈D

log
∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )

P (x, π̂α,β
x = πα,β

x |θ)

q(πα,β
x )

≥
∑

x∈D

∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )log

P (x, π̂α,β
x = πα,β

x |θ)

q(πα,β
x )

= Q(θ, q,D)

Property 2.

l(θ,D) = Q(θ, q,D)|
q=P (π̂α,β

x =π
α,β
x |θ)

proof

l(θ,D)−Q(θ, q,D)

=
∑

x∈D

(logP (x|θ)−
∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )log

P (x, π̂α,β
x = πα,β

x |θ)

q(πα,β
x )

=
∑

x∈D

(logP (x|θ)
∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )

−
∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )log

P (x, π̂α,β
x = πα,β

x |θ)

q(πα,β
x )

=
∑

x∈D

∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )(log

P (x|θ)q(πα,β
x )

P (x, π̂α,β
x = πα,β

x |θ)
)

=
∑

x∈D

∑

π
α,β
x ∈Πα,β

x

q(πα,β
x )(log

q(πα,β
x )

P (π̂α,β
x = πα,β

x |θ)
)

= 0, iff q(πα,β
x ) = P (π̂α,β

x = πα,β
x |θ)

Within each iteration, the evaluation function Q is calculated. Let θi denote

the parameter estimated in i-th iteration. Let τ i represent P (π̂α,β
x = πα,β

x |θ
i), the
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expected probability that x is aligned to πα,β
x based on θi.

l(θi−1, D)

= Q(θi−1, P (πα,β
x |θ

i−1), D)

= Q(θi−1, τ i−1, D)

≤ Q(θi, τ i−1, D)

≤ Q(θi, P (π̂α,β
x = πα,β

x |θ
i), D)

= l(θi, D)

Therefore, the algorithm obtains a better log likelihood after each iteration. Since

the log likelihood is bounded, the algorithm will give an optimal configuration for

alignments and paths of all the paired-end reads.

3.4 Implementation Details

Applying EM algorithm to millions of PERs to evaluate all their candidate alignments

is computationally intensive. We have developed the following two strategies to speed

up the computation.

3.4.1 Maximal exonic blocks

One of the most time consuming steps is the search for all possible splicing paths at

each PER end read alignment. In the naive method, one may compute these paths one

by one for each PER based on the splice graph G. However, such an implementation

is not feasible for large RNA-seq data. To improve on it, our method first identifies

the clusters of PER alignments sharing the same set of splicing paths. Therefore,
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instead of computing the paths for one PER alignment at a time, the search can be

conducted for the entire cluster.

The clusters were identified by partitioning the genome into maximum blocks in

which no junction starts and/or ends. We define them as maximum exonic blocks. To

identify these blocks given a set of splice junctions, we start with the whole genome

as one block. Each junction will be examined next. For each junction, if it falls into

a block, the block will be split into two smaller blocks. For paired read alignment

x, suppose its start read xα is mapped to position [a1, b1] and its end read xβ is

mapped to position [a2, b2]. Then xα can be mapped to a start block Bα = [Bl
α, B

r
α]

and xβ can be mapped to an end block Bβ = [Bl
β, B

r
β], such that Bl

α ≤ b1 ≤ Br
α

and Bl
β ≤ a2 ≤ Br

β . After all the junctions are examined, the resulted blocks are all

maximum blocks containing no junctions.

We then map all the paired end read alignments onto these blocks. If two paired

read alignments πx1 and πx2 belong to the same start block and the same end block,

they cover the same set of junctions and hence have the same set of possible paths.

In this case, we group them into one cluster of PERs. For every cluster, we only need

to compute the possible paths once. Then the particular set of possible distances for

every alignment of this cluster can be calculated by adding the particular distance

on the start block and the end block to the shared distance from the start block to

the end block.
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3.4.2 Independent Set of PERs

Performing iterative EM on all PERs is both memory and time consuming. Since

most of the alternative splicing events occur locally within a gene and are independent

among different genes, we adopt a divide and conquer approach by dividing the set

of PERs into a number of minimum independent sets. Two sets of PERs are called

independent if they do not share junctions. A set of PERs is a minimum independent

set if it cannot be divided into two subsets of PERs that are independent. The prob-

ability of a PER is dependent on the junctions only if they overlap in their genomic

span. This procedure helps to speed up the program significantly by confining EM

procedures within each independent set, which is much smaller than the whole data.

3.5 Experimental Results

3.5.1 Improved splice junction detection on the breast cancer dataset

Datasets and parameters

We applied our methods on two 2x35bp paired-end RNA-seq datasets sampling two

well-studied breast cancer cell lines, MCF-7 and SUM-102. The RNA-seq data were

generated by the Illumina Genome Analyzer II.

Both datasets were first mapped by MapSplice by aligning all 35bp end reads

individually. The error tolerance was set to 5%, allowing up to 2 mismatches in the

alignment for each 35bp read. For spliced alignment, the minimum anchor size was

6 bp beyond the splice junction.

To understand how PERs might affect the sensitivity and specificity of junction
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detection, no further filtering was performed on the alignments. Next, PER fragment

alignment was computed using the methods proposed in this paper. The mate-pair

distance distribution was fit to a Gaussian model with a mean of 112 bp and standard

deviation of 40 bp.

The software was implemented in C++. The results presented here were run on

an Intel(R) Xeon(R) E5540 (2.53GHz) CPU running Linux. The program is single-

threaded and finished within 5 hours on each data set, using less than 10G memory.

The software requires alignments of the individual end reads following the standard

SAM format. In our case this was produced using MapSplice, but it can also be

produced by TopHat or other RNA-Seq aligners producing read alignments in the

SAM format. The output is the predicted alignment of the PER fragments also

following the SAM format.

Table 3.1: Summary of the experimental datasets.

same chromosome cross-chromosome
#PERs input mapped input mapped
MCF-7 12.7M 11.5M 541K 79K
SUM-102 13.6M 12.5M 527K 61K

Resolving Ambiguous Alignments

For each dataset, the number of input paired-end reads and the number of success-

fully mapped PERs are summarized in Table 3.1. About 91% of the PERs with both

end reads mapped to the same chromosomes have fragment alignments with high

probability. In contrast, less than 15% of the PERs have a highly probable fragment

alignment if their end reads are mapped to different chromosomes. This might re-
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flect the susceptibility of multiple alignment for short reads as a result of repeats or

homologous genes across the genome.

Among the 11.5 million mapped PERs in the MCF-7 sample, about 7 million

PERs have unique fragment alignments. Most of these PERs map onto exonic re-

gions, and therefore contain only 49% of the junctions found among the single end

reads. The rest of the mapped PERs either have ambiguous end alignments or am-

biguous splicing paths. In these cases expectation maximization has assigned the

most likely alignment. Without these alignments, it would be difficult to evaluate

the quality of the majority of splice junctions. Restricting PER fragment alignments

to unique alignments would also decrease junction coverage. The average support of

the splice junctions covered by unambiguous alignments is 14.1 reads, whereas the

average support from all PER alignments is 37.7 reads. Therefore, the expectation

maximization method improves splice junction discovery as well as providing more

accurate quantification of junction coverage, as shown in the next section.

Splice Junction Discovery

Sensitivity and specificity for splice junction detection. The alignment of the

individual 35bp end reads yields a set J of putative splice junctions. During PER

fragment alignment, the probability of each junction in J is evaluated according to

the PER fragment alignments that incorporate it, and some putative junctions will

be eliminated if there do not exist reliable PER alignments supporting them. We

denote the set of junctions remaining following PER fragment alignment as JPER. In

Figure 3.5 (a) and (b) we compare the sensitivity and specificity of junctions detected
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Figure 3.5: (a) and (b) Comparison of sensitivity and specificity of splice junction
discovery. In each chart, the left bar represents junctions found by (spliced) align-
ment of PER end reads, and the right bar represents junctions found by alignment
of the whole PER fragment. Each bar counts junctions in three categories: the bot-
tom block is the number of junctions confirmed by GenBank; the middle block is
the number of junctions whose 5’ and 3’ ends connect known exon boundaries or
are close to such boundaries; the top block corresponds to the number of junctions
that cannot be confirmed either way. (c)and (d) Comparison of junction coverage.
For each confirmed junction, the x coordinate is the junction coverage among end
read alignments, and the y coordinate is the junction coverage among PER fragment
alignments. Points close to y axis, colored red, are junctions primarily supported by
PER fragment alignments, while points close to the diagonal, colored magenta, are
junctions primarily supported by end read alignments.
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in end reads (J) with those remaining following PER fragment alignment (JPER). In

both datasets, about 79% of the junctions in JPER were confirmed by transcripts in

the Genbank database, while only 66% of junctions in J could be confirmed in this

fashion. On the other hand, 93% of the total confirmed junctions in J were also

present in JPER. The small loss of sensitivity might be due to junctions present in

one end of a PER whose other end failed to be aligned.

Among the unconfirmed junctions in JPER, in both datasets nearly 50% were found

to be either splice junctions connecting known exon boundaries or coordinates close

to known exon boundaries. The majority of the unconfirmed junctions were highly

supported and had coverage profiles resembling true junctions. In summary, splice

junction discovery through PER fragment alignment mostly preserves the sensitivity

of the discovery via individual end reads while significantly improving specificity.

Increased junction coverage with PER. We next look at how PER fragment

alignment may change the coverage of junctions. The coverage of each junction j ∈ J

is the number of alignments of end reads that include j. Each j ∈ JPER is covered

by the number of PER fragments in which the junction is part of the most probable

alignment. Since each PER fragment length is significantly longer than a single end

read, we expect the coverage of junctions in JPER to be significantly higher than the

same junctions in J .

On both datasets, the average coverage of confirmed junctions is 37.7 using PER

alignment, compared to only 11.1 using end read alignment. The scatter plots shown

in Figure 3.5 (c) and (d) illustrate the PER support vs. single end support for

all confirmed junctions. Around 25% of junctions are primarily supported by PER
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fragments, while only around 7% of junctions gain substantial support from single end

reads. Furthermore, the majority of the junctions (more than 67%), corresponding

to points colored blue, have PER support three fold higher than single end reads.

To evaluate the accuracy of the junction coverage in the presence of alternative

splicing we selected 8 known skipped-exon alternative splicing events. We used quan-

titative RT-PCR to measure, in both of our data sets, the exon skipping ratio of the

event, i.e. the fraction of transcript isoforms that include the preceding exon and the

successor exon, but not the skipped exon. We compared these experimental values

with exon skipping ratios calculated using the ratio of splice junction counts deter-

mined using individual end read alignments and using PER fragments alignments

(Figure 3.6 (a)). With a Pearson correlation of 0.83 across all 16 measurements,

the PER fragment alignments achieved high agreement with experimental values, as

shown in Figure 3.6 (b). The accuracy is higher than the exon skipping ratio derived

using counts from single end reads, which has a correlation of 0.78.

In summary, PER fragment alignment yields higher coverage of junctions than

obtained from alignment of the end-reads only. The agreement with experimental

measurements suggests that PER fragment alignment yields accurate coverage and

assigns the correct splicing alternative to the individual PER fragment alignments

that have splice graphs with alternative edges.

3.5.2 Comparison with SpliceMap

SpliceMap [Au et al., 2010] finds splice junctions in RNA-seq paired-end reads (PER).

The algorithm performs independent spliced alignment of the end reads to a reference
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Figure 3.6: (a) An example of an exon skipping event in gene FLNA with junc-
tion counts determined from the SUM102 RNA-seq data via end read alignments
and PER fragment alignments, respectively. The skipping ratio is computed as
count(AC)/(count(AC) + 1

2
(count(AB) + count(BC))). (b) Correlation of 8 exon

skipping ratios derived from qRT-PCR in each dataset and those computed using
PER end read alignments and PER fragment alignments, respectively.
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Table 3.2: Summary of the comparison results between SpliceMap and MapPER.
The first column is the number of PER with endpoints aligned to the genome within
the constraints of the respective methods. The second column records the fraction
of end alignments that are valid alignments, i.e., consistent with an RNA fragment
of size within the expected bounds from the RNA-seq protocol. The third column
reports the number of junctions found within the end alignments, and the last two
columns report the specificity of these junctions as measured by the ASTD database
of known junctions ( Koscielny et al., 2009).

SpliceMap MapPER
PERs Mapped 15.384M 16.964M
% with Fragment Alignment %67.9 %100
Total Junctions 164,854 155,594
Confirmed Junctions 138,859 135,530
Specificity %84.2 %87.1

genome and retains aligned pairs within 400,000bp in genomic coordinates. Splice

junctions found in the ends of the retained pairs are the output of SpliceMap.

The MapPER algorithm described in this chapter has a different goal. Its output

for a given paired-end read is the predicted alignment of the entire sampled RNA

fragment, not just the sequenced ends or the junctions therein. It leverages the align-

ments of other reads in the same dataset to predict the alignment of the unsequenced

portion of the fragment, guided by the expected fragment length that is part of the

RNA-seq PER protocol.

To compare the two methods we compare the set of splice junctions found by

each within the alignments of the PER ends and report how many of these junctions

can be found in the ASTD database of junctions [Koscielny et al., 2009]. We also

report how many of the endpoint alignments of each algorithm are consistent with

the expected size of the fragments.

Experimental setup:
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We applied both methods on the 2x50bp PER dataset used in the SpliceMap

article [Au et al., 2010]. The data is publicly available in database GEO with acces-

sion number GSE19166. The protocol used to prepare the sample resulted in RNA

fragments with a mean size of 114 bp between the sequenced ends and a standard

deviation of 34 bp. The dataset contains about 23 million paired-end reads.

We applied SpliceMap v3.2.1 to the dataset, tolerating up to two bp mismatch in

each end alignment.

Our method used MapSplice v1.12 with the same error tolerance to align reads

to the reference genome and used MapPER v0.1 to infer PER fragment alignments.

Since the SpliceMap method was designed to find only canonical junctions span-

ning less than 400K bp on the genome, we restricted MapSplice to the same conditions

(MapSplice normally identifies non-canonical and fusion junctions as well).

PER fragment alignment: The MapPER fragment alignment algorithm is

capable of resolving PERs with distances larger than normal range. We say a PER

has a valid alignment if the inferred fragment alignment has a length in the expected

range (within 3 s.d. of the mean). The results of SpliceMap method and MapPER

method are compared in Table 3.2. MapPER aligned more PER than SpliceMap and

all the alignments were required to be valid alignments. SpliceMap aligned end reads

within 400K bp in genomic coordinates, among which 67.9% were classified as valid

based on the expected mate-pair distances. The distances of the remaining 32.1%

vary from 200bp to 400kb. Those alignments may harbor false positive alignments

and false positive splice junctions. As a result, MapPER has higher specificity in

terms of junction discovery than SpliceMap. It has similar sensitivity compared to
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Figure 3.7: A comparison of the support of junctions discovered by SpliceMap and
our method.

SpliceMap despite constraints for its accepted alignments that are more stringent.

Splice junction coverage: We compared coverage, the number of reads support-

ing a junction, derived from SpliceMap and our MapSplicePER method. As shown in

Figure 3.7, the average junction support from SpliceMap is 19.9, including support of

18.5 from uniquely mapped reads and 1.4 from reads with multiple mappings. With

PER fragment alignment, the support increases to 65.2, tripling the average junction

support derived from SpliceMap.

In conclusion, the proposed MapPER method is able to perform fragment align-

ments for Paired-end RNA-seq reads. It increases specificity of the splice junction

alignment without loss of sensitivity when the depth of sampling is high. Through

the inference of the unsequenced fragments of PERs, it increases coverage of the

transcriptome in general, and junctions in particular.
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3.5.3 Consolidation of fusion junction discovery

Finally we apply the methods of this paper to the problem of gene fusion detection.

Generally 35bp reads are too short to identify long range fusion junctions with any

confidence, since genome-wide spliced alignment of a 35bp sequence will yield multiple

occurrences due to chance as well as repeats and homologous genes.

We obtained a candidate set of fusion junctions from two sets of 75bp single read

RNA-seq datasets from the same cell lines. The 75bp data set was aligned genome-

wide using MapSplice without filtering (to maximize sensitivity) and candidate fusion

junctions were selected by a spliced 75 bp alignment whose prefix and suffix (of length

at least 25bp) were mapped to different genes.

Even by limiting the 75bp alignment to be unique, we obtained 13513 candidate

fusion junctions in the MCF-7 dataset and 11665 putative junctions on SUM-102

dataset. Taking these fusion junctions as putative edges in the splice graph, our PER

alignment using 2x35bp greatly reduced the possible fusion candidates. About 2904

junctions in MCF-7 and 2990 junctions in SUM-102 remained supported. This set of

fusion junctions was further filtered by eliminating pairs of genes with high sequence

similarity to avoid false positive predictions due to homologous genes. Figure 3.8

shows a final set of 18 fusion events where the genes connected by the junctions have

less than 35% identity similarity evaluated by the Align program from Emboss. This

includes 10 fusion events in MCF-7 and 8 fusion events in SUM102. Eight out of 10

MCF-7 fusion events were previously reported by Maher et al., 2009, where they were

confirmed by experimental qRT-PCR validation. The detailed information of these
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Figure 3.8: A set of gene fusion events confirmed by PER data, plotted with Cir-
cos [Krzywinski et al., 2009]. Red links refer to gene fusions events specific to MCF-7
alidated by Maher et al. [2009]. Blue links refer to two additional gene fusion events
detected in MCF-7. Green links refer to the predicted gene fusion events in SUM-102.

gene fusion events are listed in Table 3.3.

3.6 Discussion

RNA sequencing using the paired-end protocol is a cost-efficient way to sample tran-

script fragments longer than the sequencing capability by sequencing only the ends.

53



www.manaraa.com

Table 3.3: A list of rediscovered gene fusions specific to MCF-7 reported by Maher
et al. [2009]. Most of the fusion junctions have much higher PER support than single
75bp read support.

Donor Acceptor Similarity #PERs

BCAS4 chr20 BCAS3 chr17 24.3% 731
ARFGEF2 chr20 SULF2 chr20 27.6% 3
SULF2 chr20 PRICKLE2 chr3 29.7% 4
AHCYL1 chr1 RAD51C chr17 22.4% 9
ATXN7 chr3 BCAS3 chr17 30.3% 4
LOC100288332 chr16 SMG1 chr16 3.3% 29
PPP4R1L chr20 ABCA5 chr17 11.4% 3
MYO9B chr19 FCHO1 chr19 28.7% 15

We propose a probabilistic framework to predict the alignment of each transcript

fragment to a reference genome. The alignment chosen is determined by maximizing

the likelihood of all PER alignments through an expectation maximization method.

PER transcript fragment alignment offers a number of advantages over the align-

ment of just the end reads. First, the fragment alignments significantly increase

coverage of the transcriptome, providing a more robust measure of transcriptome ex-

pression profiles. Second, the splice junctions in the transcript fragments have higher

specificity than the junctions in the individual end reads because the PER fragment

alignments maximize information from the entire set of end read alignments. Third

the splice graph accurately captures alternative paths between two end reads and

the expected mate-pair distance of end reads can effectively disambiguate them, as

shown by the high correlation with experimental measurement of alternative splicing

events.

Another PER aligning method SpliceMap [Au et al., 2010] examines the PER sup-

port of a junction within some neighborhood and uses that to filter splice junctions.
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However, lacking a splice graph model of the connection between the end reads, the

method may miss true support and include spurious support especially in genes that

are alternative spliced or are not highly expressed. In comparison, our likelihood-

based method finds the accurate and complete set of PER supports without relying

on an arbitrary threshold.

A major impetus for our work is the detection of novel gene fusion events that

result from genomic rearrangement in cancer cells. However, identifying long range

fusion junctions is particularly challenging due to the increased frequency of repeats

and homologous genes at the genome wide scale. Our PER alignment approach is

capable of detecting trans-chromosome and trans-strand gene fusion events, and the

long length of the aligned transcript fragments make more likely the detection of

such an event with highly significant long anchors on each side of the fusion. We

have demonstrated the application of our method using 2x35bp PER reads together

with single 75bp reads from MCF-7 and SUM-102 breast cancer cell lines. Our result

detected 10 events, 8 of which are gene fusion events identified by Maher et al., 2009,

demonstrating high specificity of the proposed method. If longer paired-end reads

are used, such as 2x75bp, no additional single reads would be necessary for the initial

fusion detection.

Copyright c© Yin Hu, 2013.
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Chapter 4 Genome-wide Detection of Alternative Splicing Events

4.1 Introduction

The mRNA transcriptome consists of all mRNA molecules transcribed from the

genome within a functioning cell. Different genes give rise to different transcripts

and may express differently. In addition, through the mechanism of alternative splic-

ing, different subsets of exons in a gene may be concatenated (in transcription order)

to form different transcript isoforms Sultan et al. [2008], Wang et al. [2008], Pan et al.

[2008], Kwan et al. [2008]. The diversity and abundance of isoforms transcribed from

a gene are known to vary in response to cellular differentiation and maturation as

well as environmental factors and disease. The totality of transcripts present and

their individual abundance characterizes the mRNA transcriptome and is a most ba-

sic phenotype. Thus the difference between transcriptomes sampled from healthy and

diseased cells may provide insight into the functional consequences of disease, as well

as identifying biomarkers to classify different disease types Wang and Cooper [2007].

Similarly, the difference between transcriptomes sampled at different stages in cell

development may provide insight into the functional effects of cell differentiation and

cell life cycles Wang et al. [2008], Trapnell et al. [2010].

Classically the differential analysis of transcriptomes has been studied using tech-

niques such as microarray technologies Clark et al. [2002] that identify differences

in the total expression of known gene transcripts and exon arrays Okoniewski and
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Miller [2008], Xi et al. [2008] that detect differences in the expression of known gene

exons. More recently, high-throughput sequencing methods such as RNA-seq Wang

et al. [2009] have been able to accurately record short sequences of nucleotides sam-

pled from millions of mRNA molecules in the transcriptome, and thereby are capable

of observing samples from known as well as unknown transcripts, providing a more

complete picture of the transcriptome. In addition, the large number of molecules

sampled provide the potential to accurately estimate relative abundance of transcript

isoforms.

Three basic strategies have emerged to identify differential transcription, the dif-

ference in the relative abundance of the individual transcripts across samples. The

first strategy, e.g., Cufflinks Trapnell et al. [2010], performs transcript inference and

abundance estimation followed by differential test of relative abundance. Such an ap-

proach is ideal but its performance relies on accurate transcript quantification, which

is itself a challenging problem. The RNA-seq reads generated by most sequencing

platforms are less than 100nt single or paired end. In genes with a significant number

of very similar alternative transcripts, they are too short to be assigned to individual

transcripts unambiguously, making the transcript quantification problem underdeter-

mined. Figure 4.1 demonstrates a gene with four isoforms as a result of two alternative

splicing events. Transcripts could start and end at any exon, or even within exons.

Assuming no transcript annotation is known, there can be more than one set of valid

transcripts as shown in Figure 4.1b. Even with four known transcripts as given, there

could be multiple solutions of valid quantification (Figure 4.1c). In this case, the prob-

lem of transcript quantification is unidentifiable Huang et al. [2012] and may result
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Figure 4.1: Challenges in using short reads to identify transcripts and their abun-
dance. (a) An example of alternatively spliced gene with 5 exons. Each black rectan-
gle denotes an exon and the arrows denote the splice junctions connecting the exons.
Two alternative splicing events are present in this model: exon E2 can be alterna-
tively included or skipped by transcripts passing through E1 and E3, and transcripts
passing through exon E3 may alternatively end in E4 or E5. (b) Two viable tran-
script sets of the gene in (a), both explaining the splice variants suggested by the
alternative splice junctions. (c) Two possible profiles of transcript abundance that
have exactly the same expected coverage on exons and splice junctions, provided a
transcript set. (d) The representation of alternative splicing with reduced complexity
used by DiffSplice.

in inaccurate abundance estimation. Consequentially, the uncertainty in transcript

quantification may lead to false discoveries of genes with differential transcription.

The second strategy indirectly detects differential transcription by aggregating
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changes of multiple features on the transcriptome Stegle et al. [2010], Singh et al.

[2011]. For example, a non-parametric statistical test called MMD (Maximum Mean

Discrepancy) was designed in Stegle et al. [2010] for the comparison of read coverage

on all exons. FDM (Flow Difference Metric) was designed to capture the average

flow difference of all divergence nodes between two splice graphs Singh et al. [2011].

These approaches do not rely on any transcript information. However, they provide no

simple localization of differences: MMD and FDM can only detect a diffuse “signal”

of differential transcription without identifying the specific isoforms or regions that

give rise to the difference.

The last strategy examines differential expression on annotated simple alterna-

tive transcription events in existing splicing databases. Examples include ALEXA-

seq Griffith et al. [2010], MISO Katz et al. [2010], SpliceTrap Wu et al. [2011a], and

MATS Shen et al. [2012]. These methods have been shown to be quite accurate in

identifying differences in utilization of a skipped exon by isoforms in two samples.

But they do not extend easily to more complex alternative splicing patterns with

more than 2 alternative splice forms. These methods cannot be easily generalized to

accommodate novel alternative splicing events that can be discovered by RNA-seq

data, consequentially misinterpreting the data and the splicing events.

In this chapter, we present an ab initio method named DiffSplice for the detection

and visualization of differential alternative transcription. DiffSplice circumvents the

need for full-length transcript inference and quantification and localizes its search at

Alternative Splicing Modules (ASMs) (Figure 4.1d). These modules represent the

genomic regions where alternative transcripts diverge, localizing the nature of the
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Figure 4.2: The distribution of the number of alternative transcripts per gene with
UCSC human hg19 RefSeq annotation and the number of alternative paths per ASM
after decomposition. The plot shows ASMs have significantly fewer alternative paths.
The reduced complexity allows more accurate quantification.

difference and decreasing the complexity of the differential analysis by comparing

corresponding ASMs between samples (Figure 4.2). The ASMs are detected auto-

matically from a transcriptome-wide expression-weighted splice graph (ESG), which

is built directly from read alignments and captures all the sample-relevant splicing

events including novel ones. Expression estimation of associated isoforms and tests

for differential transcription start from the simplest ASMs, which yields estimation

that is more robust to sequencing bias, and work outward. A non-parametric statis-

tical test is introduced to assign the significance level of the differential transcription

in the ASMs with a controlled false discovery rate. By design, differential analysis on
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ASM can be performed using short reads.

Our results on synthetic datasets demonstrate the precision of DiffSplice in the

discovery and the expression estimation of ASMs and hence the sensitivity in the

quantitation of transcriptional differences between samples. Simulation experiments

on human transcriptome support the robustness of our method at different sampling

depths and under various sampling biases. We applied DiffSplice on a time course

lung differentiation dataset, where 498 genes were tested to have significant change

of transcription as well as 2077 with significant change of overall gene expression,

supporting the hypothesis that differential transcription is the key in the mucociliary

cell differentiation and function. We also discovered 910 novel alternative splicing

events that were not present in existing RefSeq and UCSC transcript annotations.

The consideration of replicates in test statistics allowed DiffSplice to account for

sample variations, reducing the risk of unreliable discoveries. Beyond the scope of

differential transcription in alternatively spliced exons, the application of the proposed

method on a breast cancer dataset discovered cell line specific structural variations

such as deletions, demonstrating the feasibility in identifying irregular transcription

variants that may reveal crucial regulatory mechanism in a cancer transcriptome.

4.2 Related work

4.2.1 Differential transcription analyses

As discussed in Section 3.1, in general philosophy the existing methods for differ-

ential transcription analysis may be divided into 4 basic strategies: the gene-level
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Table 4.1: Methodological comparison of differential transcription analyzing ap-
proaches using RNA-seq — transcription event reconstruction and quantification.

Category Method Description

Granularity of differential analyses

Gene level MMD, FDM

Compare overall read distribu-
tion on features in the gene, such
as the exons and the alternative
splice sites

Transcript level

Cufflinks, combinations
of transcript quantifica-
tion approaches and dif-
ferential gene expression
analyzing methods

Directly estimate and compare
the abundance of transcripts in
the transcriptome

Alternative
splicing level

Alexa-seq, MISO, Splice-
Trap, MATS, DiffSplice

Estimate and compare the abun-
dance of splicing variants at alter-
native splicing events in the tran-
scriptome

Transcription specification

Reference
transcriptome-
based

MMD, RSEM, Alexa-
seq, MISO, SpliceTrap,
MATS

Rely on transcriptome annotation
to generate the gene model, tran-
script set or alternative splicing
events

Ab initio,
annotation-free

FDM, Cufflinks, DiffS-
plice

Use only read alignments the
reference genome to reconstruct
splice graph, transcripts or alter-
native splicing events

Variant expression estimation/interpretation

Observed read
distribution

MMD, FDM
Use the observed read counts or
the number of junction spanning
reads directly with no estimation

Exon skipping
ratio

Alexa-seq, MISO, Splice-
Trap, MATS

Estimate the ratio of exon skip-
ping variant against exon retain-
ing variant, allowing only 2 vari-
ants typically

Alternative path
abundance

Cufflinks, DiffSplice

Estimate the relative propor-
tions of all alternative tran-
scripts/splicing paths, allowing
more than 2 variants
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Table 4.2: Methodological comparison of differential transcription analyzing ap-
proaches using RNA-seq — differential analysis.

Method Description

Test statistic of differential transcription

Cufflinks

FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) for transcript expression level, the Jensen-
Shannon divergence between relative transcript propor-
tions of a gene at different conditions

MISO
The Bayes factor comparing hypothesis of differential tran-
scription against hypothesis of non-differential transcrip-
tion

FDM The averaged flow difference at all splice sites

DiffSplice
Read coverage for splicing variant expression level, the rel-
ative difference statistic measuring the ratio of between-
group discrepancy against within-group variance

Assessment of statistical significance of differential transcription

Cufflinks
The p-value according to the asymptotic distribution
of Jensen-Shannon divergence, derived from the Delta’s
method

MISO The magnitude of the Bayes factor

MATS
The posterior p-value of inclusion-ratio change, evaluated
using MCMC (Markov Chain Monte Carlo)

FDM The p-value from permutation test by permuting reads

DiffSplice
The false discovery rate over all genes from permutation
test by permuting samples

diffuse analysis such as MMD [Stegle et al., 2010] and FDM [Singh et al., 2011], the

transcript-level differential test like Cufflinks [Trapnell et al., 2010], the annotation-

based exon inclusion/exclusion analysis such as ALEXA-seq [Griffith et al., 2010],

MISO [Katz et al., 2010], SpliceTrap [Wu et al., 2011a] and MATS [Shen et al., 2012],

the data-driven differential splicing event analysis like DiffSplice [Hu et al., 2012].

The other detailed differences among the methodologies are summarized below
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and in Table 4.1 and Table 4.2.

Granularity of differential test Methods perform differential transcription

analysis in different unit. The indirect methods, such as MMD and FDM, collect

expression measurements in the basis of gene, without knowledge of transcripts. The

transcript-based methods, such as Cufflinks, estimate abundance of transcripts from

annotation or transcript reconstruction procedures and test for differential expression

in the basis of transcript. The last category, including ALEXA-seq, MISO, Splice-

Trap, MATS and DiffSplice, localizes differences at alternative splicing events. The

signal of differential transcription may have different magnitude when looking at dif-

ferent levels of a gene and hence may cause disagreement on results of differential

test.

Alternative variants specification Methods using or not using transcript an-

notation interpret the data with different set of splicing variants/transcripts and

thereafter may have different conclusions on many genes. Methods depending on

transcript annotation, including MMD, ALEXA-seq, MISO, SpliceTrap and MATS,

are challenged by the uncertainty of the existence of the annotated transcripts and

the incompleteness of the transcript set in the annotation; Methods utilizing only

RNA-seq read alignments, such as Cufflinks, FDM and DiffSplice, are challenged by

the high ambiguity between actually expressed loci/splicings and noise.

Variant expression estimation The expression estimation methods are devi-

ated. MMD uses the observed read counts on every base; FDM uses the observed

spliced read counts on every junction; MATS estimates the exon skipping ratio based

on the spliced read counts on the skipping and retaining junctions; MISO and Splice-
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Trap estimates the exon skipping ratio using a Bayesian technique; Cufflinks and

DiffSplice estimate transcript abundance and alternative path abundance following a

Poisson model. The accuracy of the estimated variant expression directly determines

the correctness of differential test statistics.

Differential test statistic Differences in splicing/transcript variants’ expression

between sample groups are summarized into differential test statistics. For example,

Cufflinks calculates the Jensen-Shannon divergence (JSD) that compares the relative

proportion of transcripts in a gene. MISO presents the Bayes factor that calculates

the marginal likelihood ratio of the differential transcription model against the non-

differential transcription model. FDM averages the difference in the proportion of

alternative splicing variants at every splice site in a gene. DiffSplice incorporates

the JSD and the SAM statistic [Tusher et al., 2001] to develop a test statistic that

directly measures the discrepancy between group-wise transcript proportion profiles,

taking into account the within-group variance and the expression level.

Assessment of significance Last but not least, the statistical tests that eval-

uate the significance of the statistics vary largely. Cufflinks derives the asymptotic

distribution of JSD using the Delta method and calculates the p-value of the ob-

served difference on each gene according to the asymptotic distribution. MATS uses

the Markov chain Monte Carlo method to assess the posterior p-value of the change

on exon-inclusion ratio for every exon skipping event. FDM and DiffSplice both use

permutation test, but they test different things. For two groups of samples, FDM

compares all pairs of samples and selects genes with large difference of the number

of between-group significances and the number of within-group significances. Every
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gene is tested separately. In comparison, DiffSplice selects significant differences by

comparing the calculated statistics to the expected statistics on all alternative splic-

ing modules over the transcriptome, not only on a single gene, and controls false

positives with the false discovery rate.

4.3 Construction of expression-weighted splice graph

4.3.1 Construction of Transcriptome-wide unified Expression-weighted

Splice Graph (ESG)

Traditionally, the transcriptome is either represented by a list of transcripts Trapnell

et al. [2010] or a splice graph Heber et al. [2002], Hu et al. [2010], Singh et al.

[2011]. In comparison, a list of individual transcripts encodes the complete set of

transcriptional information, whereas a splice graph summarizes the variation among

multiple transcripts and clearly shows the exons that may be spliced out during

transcription as well as the exons that are always retained. With RNA-seq reads, the

prediction of individual exons and splice junctions has become a routine, allowing

accurate reconstruction of the splice graph. The prediction of full-length mRNA

transcripts remains challenging especially for genes with highly complex alternative

splicing events. Therefore, our method starts with the construction of a splice graph.

The splice graph is built from the RNA-seq read alignments to the reference

genome. Alternatively, it can be built de novo by assembly of RNA-seq reads Birol

et al. [2009], Grabherr et al. [2011], Li et al. [2010c]. The alignment of RNA-seq reads

to a reference genome has been studied extensively in the past two years Wang et al.
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[2010a], Trapnell et al. [2009a], Au et al. [2010]. There exist two types of read align-

ments, exonic alignments and spliced alignments. An exonic alignment corresponds

to a contiguous sequence of nucleotides on the genome, typically indicating expressed

exonic regions. A spliced alignment spans two or more exons, consequentially defin-

ing the donor and acceptor sites of the splice junctions. For paired-end reads (PER),

DiffSplice first applies MapPER Hu et al. [2010] to determine the whole transcript

fragment alignments according to the distribution of the expected mate-pair distance

(Figure 4.3a), which allows more accurate splice prediction and expression profiling.

In a splice graph G = 〈V,E, w〉, every node corresponds to an exonic unit, an

expressed region on the genome whose boundaries are delimited by donor and acceptor

splice sites defined by the location of splice junctions. It is difficult to detect the

precise transcription start and end sites with RNA-seq reads from commonly used

library prep protocols. They are therefore estimated as the locations where read

coverage changes significantly from absence to presence and vice versa relative to

background, respectively. With alternative splice sites, part of an exon can be skipped

in one transcript but not in others. In this case, a continuous exonic region will be

further divided into smaller units, allowing each of them to be alternatively included

in transcripts. Since the exonic units are linearly ordered on the reference genome,

nodes in V can be ordered based on their locations on the genome. We say vs < ve

if the location of vs is upstream of ve in the direction of transcription. Two exonic

units will be connected by an edge if there exist read alignments that contiguously

cover both of them. The direction of the edge is determined by the direction of

the transcription identified by the dinucleotide sequences in the intron flanking the
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donor and acceptor sites. For example, a GT-AG dinucleotide pair flanking the intron

sequences in the reference genome suggests forward transcription, while the CT-AC

pair suggests the reverse transcription. The expression levels on the exonic units and

the splice junctions are then collected as the weights w of the vertices and the edges.

To make the description of the following algorithm easier, we further augment the

general splice graph G = 〈V,E, w〉 by adding a virtual transcription start node ts

and a virtual transcription end node te. Edges will be added to connect the start

node ts to all the vertices where transcripts initiate and similarly to connect all the

vertices where transcripts terminate to the end node te. Therefore, all transcripts in

a gene will start from ts and end in te. We also assume for every vertex v ∈ V there

is a directed path from ts to v and a directed path from v to te, that is, every exonic

segment can be reached by some transcript in the gene. We refer to the augmented

splice graph as the Expression-weighted Splice Graph (ESG).

4.4 Identification of differentially transcribed loci

4.4.1 Detection of Alternative Splicing Module (ASM)

Next we identify alternative exonic events through the decomposition of the ESG

into alternative splicing modules (ASMs). An ASM is defined as a single-entry and

single-exit subgraph of the splice graph. The entry node is the only exonic unit

where transcripts can flow into the ASM; Similarly, the exit node is the only node

where transcripts leave the ASM. Transcripts diverge into more than one isoforms by

following different paths in the ASM before reconvening at the exit node.
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unified expression-weighted splice graph and identification of the alternative splicing
modules
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Let G = 〈V,E, ts, te, w〉 be the ESG of a gene. A vertex u ∈ V pre-dominates a

vertex v ∈ V if every path from the transcription start ts to v (include v) contains

u. A vertex w ∈ V post-dominates a vertex v ∈ V if every path from v to the

transcription end te (include v) contains w. Additionally, u/w is the immediate

pre/post-dominator of v if every other vertex x ∈ V that pre/post-dominates v also

dominates u/w. We define the out-degree and the in-degree of a vertex v ∈ V as the

number of out-going edges and the number of in-coming edges of v, denoted as d+(v)

and d−(v), respectively.

Definition A subgraph H of a graph G is said to be induced if, for any pair of vertices

x and y of H, xy is an edge of H if and only if xy is an edge of G. In other words, H is

an induced subgraph of G if it has exactly the edges that appear in G over the same

vertex set. If the vertex set of H is the subset S of V(G), then H can be written as

G[S] and is said to be induced by S.

Definition An ASM is an induced subgraph H(tsH , teH) =< VH , EH , tsH , teH > of

G with a distinguished node tsH not in H as the entry and a distinguished node teH

not in H as the exit satisfying the following conditions

1. Single-entry : all edges from (G−H) to H come from tsH ;

2. Single-exit : all edges from H to (G−H) go to teH ;

3. Alternative paths : d+(tsH) > 1 and d−(teH) > 1;

4. Minimal : there does not exist a vertex v ∈ VH such that v post-dominates tsH

or pre-dominates teH in H(tsH, teH).
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Having an ASM being single-entry and single-exit makes it an independent ob-

servation of the transcriptome. The number of transcript copies that go through an

ASM can be entirely determined by the number of transcript copies passing through

the entry node and exit node. There does not exist additional flow of transcripts.

This property allows robust local abundance estimation within each ASM.

One ASM might be nested within another ASM if it is a subgraph of the bigger

one. For two distinct ASMs H1(ts1, te1) and H2(ts2, te2), H2 is nested in H1 if and

only if ts1 pre-dominates ts2 and te1 post-dominates te2. If there exists no H3 such

that H2 is nested in H3 and H3 is nested in H1, we say H2 is a child of H1 and

H1 is the parent of H2. The parenting and nesting relation among the ASMs will

form a hierarchy, showing how transcripts in the gene diverge and reconvene from

transcription start sites to transcription end sites. Figure 4.4 shows the hierarchical

decomposition on gene VEGFA. A total of 6 ASMs result from the decomposition.

In the resulting hierarchy, if H1 is an ancestor of H2 (i.e., H2 is nested in H1), the

transcripts flowing into H2 must be a subset of the transcripts in H1. If H1 and H2

have the same parent (i.e., H1 and H2 are siblings) and are on the same path, the

transcripts passing through H1 and H2 are the same and the expected expression of

H1 and H2 are the same.

Here we outline the algorithm that decomposes an ESG G =< V,E, ts, te, w >

into a set of ASMs. The pseudo-code can be found in Supplementary Section 1. Step

1-2 describe the procedure to determine ASMs within an ASM-type subgraph, and

step 3 decomposes the subgraph which allows the iterative identification of all ASMs

in the gene. To initialize, we start with the entire ESG G.
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Figure 4.4: The splice graph and the ASM decomposition of gene VEGFA.

Step 1. Calculate the immediate pre/post-dominators. We first calculate

the immediate pre-dominators and post-dominators of every vertex v ∈ V . The pre-

dominators for vertex v (other than v) can be found by iteratively intersecting the

sets of pre-dominators for all predecessors of v Ferrante et al. [1987], Pingali and

Bilardi [1997]. Similarly, the set of post-dominators for v is the union of v and the

intersection over the sets of post-dominators for all successors of v. According to

the approach proposed in Buchsbaum et al. [1998], the bottom nodes of the depth-

first search tree of G are grouped a collection of small, vertex-disjoint regions called

microtrees. For vertex v, the aforementioned union-intersection operations are then

performed locally within the microtree where the immediate dominator of v resides.
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Step 2. Discover ASM. Candidate entries or exits for ASMs are the vertices

with out-degree or in-degree larger than 1. Let u and v be two vertices in V such that

d+(u) > 1 and d−(v) > 1. If u pre-dominates v and v post-dominates u and there does

not exist a third vertex w ∈ V such that u pre-dominates w and v post-dominates w,

the subgraph bounded by u and v, denoted as H(u, v), forms an ASM.

Step 3. Discover nested ASM. For any two edges (u, v) and (u′, v′). We order

(u, v) > (u′, v′) if and only if there exists a directed path from u to u′ and a directed

path from v′ to v. Hence the edges in H form a partial order. If there is no edge

(u′′, v′′) in H such that (u′′, v′′) > (u, v), edge (u, v) is called a maximal edge. We

remove all the maximal edges in H and iteratively go to step 1 to resolve all nested

ASMs until no new ASMs can be found in step 2.

Following is the pseudo-code for the algorithm to decompose an ESG.

input : G =< V,E, ts, te, w >
output: Pre−Dom(v) for every v ∈ V

Pre−Dom(ts)← {ts};
for v ∈ V do

Pre−Dom(v)← V ∪ {ts};
end
while changes in any Pre−Dom(v) do

for v ∈ V do
for u is a predecessor of v do

Pre−Dom(v)← {v} ∪ Pre−Dom(v) ∩ Pre−Dom(u);
end

end

end

Algorithm 1: Find Pre-dominators

The time complexity of the first step is linear in the number of vertices and

edges Buchsbaum et al. [1998], or O(|V |+|E|). In the second step, for every candidate
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input : G =< V,E, ts, te, w >
output: Post−Dom(v) for every v ∈ V

Post−Dom(ts)← {te};
for v ∈ V do

Post−Dom(v)← V ∪ {te};
end
while changes in any Post−Dom(v) do

for v ∈ V do
for u is a successor of v do

Post−Dom(v)← {v} ∪ Post−Dom(v) ∩ Post−Dom(u);
end

end

end

Algorithm 2: Find Post-dominators

input : G =< V,E, ts, te, w >
output: Emax

Emax ← any edge {e ∈ E};
for all e1 = (u1, v1) ∈ E do

for all e2 = (u2, v2) ∈ Emax do
if there is a path from u1 to u2 and a path from v2 to v1 then

Emax ← Emax\{e2} ∪ {e1};
end

end

end

Algorithm 3: Find maximal edges in an ESG G (CalculateMaximalEdges(G))

entry the search of its paired ASM exit checks whether its immediate post-dominator

is a candidate exit and also immediately pre-dominated by the entry, taking time

of O(|V |). In the last step, the maximal edges according to the partial order can

be selected by iterating over all edges in E and keeping track of the maximal edges,

resulting in an O(c|E|) time scheme. Here c denotes the number of maximal edges

in G. Because c is typically very small in a splice graph, the time complexity of the

third step can be viewed as O(|E|) in our application. Therefore, the time complexity

of identifying ASMs from an ESG G is O(|V |+ |E|) and the time for discovering all
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input : An ESG G =< V,E, ts, te, w >, parent ∆P

output: The set of ASMs A
Calculate pre-dominators in G;
Calculate post-dominators in G;
Candidateentry ← {u : d+(u) > 1};
Candidateexit ← {v : d+(v) > 1};
for all u ∈ Candidateentry do

v ← the immediate post-dominator of u;
if v ∈ Candidateexit and u is the immediate pre-dominator of v then

parent(H(u, v))← ∆P ;
A ← A∪H(u, v);
Emax ← CalculateMaximalEdges(H(u, v));
Decompose(H(u, v)\Emax, H(u, v));

end

end

Algorithm 4: Find the ASMs in an ESG G (Decompose(G,∆P ))

nested ASMs is dependent of the total number of ASMs.

4.5 Biological applications of ASM

In practice, ASM highlights the region(s) of a gene that vary among isoforms. Ulti-

mately, the biologist needs to know how differences among isoforms result in a change

in the biological activity of the protein they encode. Making the leap from RNA-seq

data to protein sequences encoded is a challenge for all approaches using RNA-seq

data to detect differential transcription. While it is possible to infer the alternative

isoforms from RNA-seq data (e.g. Cufflinks), these inferred transcripts are often

inaccurate and can lead to mistaken conclusions. In DiffSplice, we do reconstruct

subsections of transcripts and estimate their abundance they are just not the full

length transcripts but the fractions that distinguish the transcripts. Instead we fo-

cus on the parts of the gene that are variable as a result of treatment or condition,
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rather than those that are unchanged. The output of DiffSplice highlights not only

regions with significant differences in transcription, but also the reconstructed tran-

script pieces that constitute the region together with their estimated abundance in

different conditions. Furthermore, the local events identified by DiffSplice are mean-

ingful in the concept of transcripts. When a gene has only one ASM, its transcripts

have one-to-one correspondence towards the paths in the ASM. That genes tran-

scripts are differentially transcribed if and only if one or more paths of the ASM

are differentially expressed. When a gene has more than one ASM, one path of an

ASM might relate to more than one transcript. However, any differential expression

detected in ASM level will allow us to focus on only a small subset of candidate iso-

forms for further validation. A routine qPCR is often sufficient to confirm that the

most abundant transcript does encompass the most abundant edges of two or more

ASMs. Moreover, investigation of the functional and structural consequences of the

alternate exons may reveal what is occurring in genes with multiple ASMs. Do the

exons in an ASM add or remove a known motif? Does that motif require changes

in another part of the protein that is reflected in the other ASM? Are the conserved

regions the same among samples? Do nested ASMs correspond to hypervariable re-

gions of the protein? In short, careful annotation of an ASM will typically reveal as

much as an inferred isoform with little to no risk of an inaccurate reconstruction. For

the problem of differential transcription detection, this analysis in the unit of ASM

has much improved sensitivity and specificity than existing approaches based on full

length transcript reconstruction and quantification. Ours is a more fine grained ap-

proach than the whole transcript view and can potentially identify rare cases where
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mean expression of the entire gene is the same, but there are dramatic differences in

the isoforms produced.
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Figure 4.5: The splice graph and the ASM decomposition of gene ERBB4.

Here we give three examples to demonstrate that the investigation of ASMs may

reveal functional sequences. The first two examples (ERBB4 and VEGFA) show

significant sequences residing in single ASMs, while the third example (CD44) show

an isoform transition associated with multiple ASMs.

In Figure 4.5 we plot the ASM in gene ERBB4. ASM1 indicates an exon skipping

event that alternatively includes or excludes exon E3. The skipping path (p2), which

corresponds to the CYT-2 isoform in ERBB4, deletes a WW binding motif, leading

to increased cell proliferation. Muraoka-Cook et al. [2009]

We take gene VEGFA as another example which has 6 ASMs with complex nesting

structure. Bainbridge et al. have identified a 7-amino acid peptide, RKRKKSR,

encoded by exon E10. Bainbridge et al. [2003] This peptide could inhibit VEGF

receptor binding and angiogenesis in vitro. In Figure 4.4 we show the ASMs in gene

VEGFA. ASM3.1 captures the alternative inclusion/exclusion of E10. Thus, this

ASM shows that some isoforms of VEGFA lack this important peptide sequence.

Lastly, we look at two isoforms in gene CD44, CD44s and CD44v. Isoform CD44s

includes exons E1 − E5, E14 − E17 and E18, and CD44v includes exons E1 − E5,
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Figure 4.6: The splice graph and the ASM decomposition of gene CD44.

E6−E13, E14−E17 and E18 (Figure 4.6). Brown et al. have suggested a shift in CD44

expression from variant isoforms (CD44v) to the standard isoform (CD44s) is essential

in epithelial cell development and is associated with breast cancer progression. Brown

et al. [2011] The alternative exons by which CD44s and CD44v differ, E6 − E13, are

captured by three ASMs ASM4, ASM5 and ASM6, where CD44s takes path p1 in

ASM4 and CD44v takes path p2 in all ASM4, ASM5 and ASM6. Therefore, the joint
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analysis of all the three ASMs will be essential for the study of the isoform transition

in this gene.

Copyright c© Yin Hu, 2013.
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Chapter 5 The Quantification and Differential Analysis of Splicing Events

5.1 Introduction

Next, we estimate the number of transcript copies that flow through each splice path

in the ASM for each individual sample. Specifically, for every ASM, we estimate

the relative proportion as well as the expression level of its alternative paths in each

sample. Typical Poisson-based methods such as Jiang and Wong [2009a], Srivastava

and Chen [2010a] collect the number of reads falling on each exon as observations.

Because only the starting position of each read contributes to the observed counts,

these methods ignore the information encoded in the rest of the nucleotides such

as the coverage of splice junction. The counting approach makes it infeasible to

incorporate spliced reads in the model for better estimation. DiffSplice proposes a

generalized model that takes into account the observed support on splice junctions

in addition to exon expression to estimate the abundance of alternative paths. Such

consideration is crucial for estimating alternative transcription paths since alternative

splice junctions differentiate the isoforms.
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Figure 5.1: DiffSplice discovers genome-wide differential splicing events using RNA-
seq data. (d) The abundance of the alternative transcription paths in every module is
estimated, as well as the expression of the gene. (e) The statistical tests lastly select
modules and genes with significant differences in transcription and gene expression,
respectively.
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5.2 Related work

5.2.1 Transcript abundance estimation

Through transcriptome assembly, de novo or ab initio, the diversity of transcripts in

the sample should be revealed. Alternatively, transcripts from an annotation database

such as Ensembl [Ens] and Refseq [Ref] may also be used if detecting novel isoforms

is not a major concern. Then the next question is about the abundance of these

transcripts. The expression level of each transcript precisely profiles the transcription

of the cell and may provide insights in protein expression. Accurate measurement

of transcript abundance in a given sample will enable the detection of differential

expression of alternative transcripts under different conditions.

Existing transcript quantification methods can be roughly summarized into two

strategies at different analyzing units: the read-centric strategy and the exon-centric

strategy. In essence, the read-centric approaches set up a probabilistic model that

relates the observed read alignment to the latent transcript sampling probability.

The origin of a read is considered in a “fuzzy” manner, not specifying a single par-

ent transcript for the read but characterizing with a (discrete) distribution over all

possible parent transcript. The probability of observing a given alignment is then

factorized into the summarization of the products of the probability that the read

actually originates from the parent transcript and the conditional probability that

evaluates the quality of the alignment. The latent transcript sampling probabili-

ties are estimated by maximizing the joint likelihood of all reads, typically using an

expectation-maximization scheme. Some representative methods taking this strategy
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include Cufflinks [Trapnell et al., 2010], IsoEM [Nicolae et al., 2011] and RSEM [Li

and Dewey, 2011].

The exon-centric approaches, on the other hand, take the expression of exons

as basic observations. Taking the transcript-exon composition matrix, the expected

read abundance on each exon is the cumulative abundance of all transcript isoforms

that contain the exon. The transcript abundances are then solved by minimizing the

overall distance from the observed read abundance on all exons in the gene to the

expectations. Some representative methods include the Poisson-based models [Jiang

and Wong, 2009b, Richard et al., 2010, Srivastava and Chen, 2010b] and linear re-

gression approaches such as rQuant [Bohnert and Rätsch, 2010], IsoLasso [Li et al.,

2011a] and SLIDE [Li et al., 2011a]. In MultiSplice [Huang et al., 2012], the linear

model further includes a set of highly discriminative features that span multiple ex-

ons. These features utilize full read information to improve the accuracy and the

identifiability of the model.

The primary challenge for transcript abundance estimation is the significant over-

laps among transcripts in a gene, making it difficult to determine the original tran-

script of a short read unambiguously. There may exist no unique solution to the

quantification problem using short read alignment, known as the identifiability is-

sue [Lacroix et al., 2008, Hiller et al., 2009]. The estimation procedures may also

be confounded by nonuniform read distribution. The accuracy of the abundance es-

timates may be altered by the break of the random sampling assumption, due to

various types of sampling biases such as position-specific biases Bohnert and Rätsch

[2010], Li et al. [2010a], Roberts et al. [2011], Wu et al. [2011b] and the sequence-
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specific biases Li et al. [2010b], Roberts et al. [2011], Turro et al. [2011]. The effect

of the biases may be computationally alleviated by evaluating the sampling proba-

bility at different positions of transcripts and the probability of observing different

nucleotides (combinations of A, C, G and T) at ends of reads [Roberts et al., 2011,

Huang et al., 2012]. If estimating the transcript abundance on the basis of a refer-

ence transcriptome, it is biologically unlikely that all annotated transcripts will be

present in a sample. Transcripts estimated with very low abundance may be spurious

and may deviate the correctness of estimates for other transcripts. In practice, the

L1 regularization (known as LASSO [Cai et al., 2010, He and Lin, 2010]) is often

employed to reinforce the shrinkage of the expressed transcript set [Li et al., 2011a,

Huang et al., 2012].

The resulting transcript abundances are usually measured in the unit of FPKM

(fragments per kilobase of transcript per million mapped reads, used in Cufflinks [Trap-

nell et al., 2010] and IsoLasso [Li et al., 2011a]) or averaged read coverage (used in

MultiSplice [Huang et al., 2012]). If comparing transcript abundance across different

samples, the abundance should be further normalized for correct assessment of differ-

ential expression [Bolstad et al., 2003, Bullard et al., 2010, Anders and Huber, 2010,

Robinson et al., 2010, Dillies et al., 2012].

5.2.2 Group-wise differential test
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5.3 Estimating the abundance of alternative splicing variants

5.3.1 Preliminaries.

The notations used in the abundance estimation procedure are summarized in Ta-

ble 5.1. Given a transcript t and the reads from one sample, let cti be the number

of reads covering the ith nucleotide in t. We define the read coverage on t as the

averaged number of reads covering each base in the transcript, Ct =
1
lt

∑lt
i=1 c

t
i, where

lt denotes the exonic length of t. Then Ct is an estimator for the number of transcript

copies in the sample, which provides a direct measure for the expression level of the

transcript t. Similarly we define the read coverage on an exonic segment e with exonic

length of le as Ce =
1
le

∑le
i=1 c

e
i , and we use Cj to denote the number of spliced reads

that pass a splice junction j. The read coverage Ce provides an estimator for the

number of transcript copies that flow through the exonic segment e. The number

of spliced read alignments Cj constitutes an estimator for the number of transcript

copies that pass from the donor exon to the acceptor exon connected by the junction

j. Therefore, we calculate the observed read coverage for every exon and the observed

number of spliced read for every junction and derive estimator for transcript coverage

based on the observations.

5.3.2 The normal model for the observed read coverage.

We now demonstrate a model where read coverage will be used as the observed

variables for abundance estimation. Assume the sequencing procedure as a random

sampling process, in which every read is sampled independently and uniformly from
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Table 5.1: Notations in the abundance estimation for alternative ASM paths.

Symbol Meaning
r the length of a read
t an alternative transcription path
e an exonic segment
∆ an ASM
lt the exonic length of t
le the exonic length of e
Nt the number of reads from path t
Ne|t the number of reads on e from t
Ce the read coverage exonic segment e
Ce|t the read coverage on exonic segment e from transcript t
At,e a Boolean variable (1 or 0) indicating whether t includes e
m the total number of exonic segments and splice junctions in ∆
n the number of alternative transcription paths in ∆
N the total number of reads in ∆
q the relative proportion of the alternative paths in ∆
Γ the estimated expression for an alternative path or an ASM

every possible nucleotide in the transcripts Jiang and Wong [2009a]. For a single

transcript t in an ASM, the probability that a read from t falls in e is pe|t = le
lt
.

Given Nt, the total number of reads from t, the number of reads falling in segment e

Ne|t follows a binomial distribution with parameters Nt and pe|t, Ne|t ∼ Bin(Nt, pe|t).

When Nt is sufficiently large, the binomial distribution can be well approximated

using a normal distribution with mean Ntpe|t and variance Ntpe|t(1 − pe|t), written

as Ne|t∼̇N(Ntpe|t, Ntpe|t(1 − pe|t)). Let r denote the length of a read. The value of

Ne|tr

le
represents the read coverage on e contributed by t, Ce|t, whereas the value of

Ntr
lt

represents the read coverage on t, Ct. Therefore, we have
Ne|tr

le
∼̇N(

Ntpe|tr

le
, r

2

l2e
Ntpe|t(1−

pe|t)), equivalently

Ce|t∼̇N(Ct,
r(lt − le)Ct

ltle
). (5.1)
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For a splice junction j, its length lj is defined to equal the read length r, which is

the length of the exonic region where reads start in this region can cover the splice

junction. The number of spliced reads from t that covers j, Cj|t, still follows the

normal distribution in Equation 5.1.

From Equation 5.1, Ce|t and Cj|t are unbiased for Ct. The variance of Ce|t varies

according to the coverage Ct and the segment length le. Dividing the difference be-

tween Ce|t and Ct by Ct, we have the ratio
Ce|t−Ct

Ct
following a normal distribution

N(0, r(lt−le)
Ctltle

). Higher coverage and longer segments lead to estimators with smaller

variance of the relative deviation from the true transcript coverage, which we demon-

strate in the simulated results (Figure 5.3).

5.3.3 Estimation of alternative ASM path abundance

Consider an ASM ∆ with totally m exonic segments and splice junctions. Assume ∆

consists of n alternative transcription paths. The exonic length of a path t is hence

given as lt =
∑m

i=1At,ili, where At,i = 1 if path t covers the i-th exonic segment

and At,i = 0 otherwise. Let q = {q1, q2, · · · , qn} denote the relative proportions of

the alternative paths, with
∑n

i=1 qi = 1. The probability of a read falling into path

t is then written as pt =
qtlt∑n
i=1 qili

, with
∑n

i=1 pi = 1. Assume the number of reads

sampled from ∆ follows a Poisson distribution with parameter N , where N represents

the expression of ∆ in the sample accounting for the depth of sequencing and the

length of ∆ Jiang and Wong [2009a]. The number of reads sampled from path t, Nt,
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then follows a Poisson distribution with parameter N · pt, i.e.,

Nt ∼ Poisson(N · pt). (5.2)

We hence derive the maximum likelihood estimators for the path proportion, q,

and the expected total number of reads in ∆, N . With observed read coverage

C1, C2, · · · , Cm on every exonic segment and splice junction, the likelihood of q and

N is the joint density of C1 through Cm under q and N ,

L(q, N |data) = L(q, N |C1, · · · , Cm) = P (C1, · · · , Cm|q, N)

We assume that C1, C2, · · · , Cm are mutually independent. The likelihood function

can be factorized as

L(q, N |C1, · · · , Cm) =

n
∏

t=1

m
∏

i=1

f(Ci|t|Nt)g(Nt), (5.3)

where f(·) is the density of the exonic/junction coverage distribution in Equation 5.1

and g(·) is the density of the transcript read count distribution in Equation 5.2.

5.3.4 Abundance estimation in ASM

Consider an ASM with n alternative transcription paths and m features (exonic

segments and splice junctions). We define At,e as an indicator for the presence of

a feature e in transcription path t, with value of 1 if t covers e and 0 otherwise.

The indicators for the presence of every exon/junction in each path form an n ×m

indicator matrix A.
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Derivation of likelihood function

Let Ce|t denote the coverage on the eth feature from the tth path. Under the inde-

pendence assumption, the likelihood can be factorized as

L(q, N |C1, · · · , Cm) = P (C1|1, · · · , C1|n, C2|1, · · · , C2|n, · · · , Cm|1, · · · , Cm|n|q, N)

=

n
∏

t=1

P (C1|t, C2|t, · · · , Cm|t)

=
n
∏

t=1

P (C1|t, C2|t, · · · , Cm|t|Nt)P (Nt)

=
n
∏

t=1

m
∏

i=1

P (Ci|t|Nt)P (Nt)

=

n
∏

t=1

m
∏

i=1

f(Ci|t|Nt)g(Nt),

where f(·) is the density of N(Ct,
r(lt−le)Ct

ltle
) and g(·) is the density of Poisson(λt),

λt = N · pt.

Maximum likelihood estimators

The maximum likelihood estimator for q and N are the ones that maximize the

likelihood,

(q̂, N̂) = argmax
q,N

L(q, N |data).
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l(q, N |C1, · · · , Cm)

= logL(q, N |C1, · · · , Cm)

=
n

∑

t=1

[log(g(Nt)) +
m
∑

i=1

log f(Ci|t|Nt)]

=

n
∑

t=1

{log
e−λtλNt

t

Nt!
+

m
∑

i=1

log[
1

√

2πr(lt − li)Ct/(ltli)
e
−

(Ci|t−Ct)
2

2r(lt−le)Ct/(ltle) ]}

=

n
∑

t=1

{−λt +Nt log λt − logNt! +

m
∑

i=1

[
1

2
log lt +

1

2
log li −

1

2
log 2π −

1

2
log r

−
1

2
log(lt − li)−

1

2
logCt −

(Ci|t − Ct)
2

2r(lt − le)Ct/(ltle)
]}

EM algorithm for deriving estimators

We then use the expectation maximization (EM) algorithm to derive the maximum

likelihood estimators for q and N (Supplementary Section 2). In addition to estimat-

ing transcription path proportions, the EM algorithm also calculates the expected

expression of each transcription path, Γ1,Γ2, · · ·Γn. Then the expected expression of

∆ sums up the expected expression of all transcription paths in ∆, Γ∆ =
∑n

t=1 Γt,

forming an estimator for the total number of transcript copies passing through ∆.

The expectation maximization (EM) algorithm to find the maximum likelihood

estimator q̂ and N̂ is detailed as the following.

1. E-step:

Denoting the values of qt at step v as q
(v)
t , we first calculate the conditional

expectation of Ct conditioning on q
(v)
t . Let C(1), C(2), · · · , C(m′) be the read coverage

of the exonic segments that are in path t, i.e., At,e = 1 if e ∈ {(1), (2), · · · , (m′)} and
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At,e = 0 otherwise. Let Ĉe|t denote the expected coverage on exonic segment e from

t, Ĉe|t =
peq

(v)
t At,e

∑n
j=1 peq

(v)
j Aj,e

· Ce. Let kt,e denote r(lt−le)
ltle

, so we have Ce|t ∼ N(Ct, kt,eCt).

Therefore, the conditional expectation of Ct is the maximum likelihood estimator

that maximizes the joint density of the m′ normal densities,

Ĉt = E
q
(v)
t

[

Ct|C(1), C(2), · · · , C(m′)

]

=
−m′ +

√

m′2 + 4
∑m′

i=1 k
−1
t,(i)

∑m′

i=1 k
−1
t,(i)

ˆC(i)|t

2

2
∑m′

i=1 k
−1
t,(i)

The expected number of reads on path t is hence calculated as N̂t =
Ĉtlt
r
.

2. M-step: Then we derive the parameters that maximize the conditional likeli-

hood on N̂t:

Set
∂L

∂N
to 0

⇒ −1 +
n

∑

t=1

Nt

1

N̂
= 0

⇒ N̂ =
n

∑

t=1

N̂t

Set
∂L

∂qt
to 0

⇒
n

∑

t=1

(

−
dλt

dq̂t
+Nt ·

1

λ
·
dλt

dq̂t

)

= 0

⇒
n

∑

t=1

(

(
Nt

N
− 1) ·

dλt

dq̂t

)

= 0

⇒ q̂
(v)
t =

N̂t ·
∑n

j=1,j 6=t

(

q̂
(v−1)
j (

∑m
i=1 piAj,i)

)

(N̂ − N̂t) · (
∑m

i=1 piAt,i)

5.3.5 Estimation of gene expression

Within a gene G, the abundance estimation procedure starts from the minimal ASMs,

i.e., the ASMs in the bottom level of the decomposition hierarchy, then propagates
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towards the top of the hierarchy. During inference within an ASM ∆, all ASMs

nested in ∆ must have performed the alternative path abundance estimation and

hence are treated as single exonic segments, using their estimated expression as the

exonic coverage. The estimator for the expression of gene G, ΓG, is hence the mean

expression of all the exonic segments and ASMs that directly constitute G (or in

the decomposition hierarchy all the children of G on the first level). This estimator

provides a direct measure for the expected total number of transcript copies in gene

G in the RNA-seq sample.

Copyright c© Yin Hu, 2013.
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5.4 Statistical test for differential transcription

Differential expression under different conditions may exhibit in two aspects. At the

gene level, the difference in a gene’s expression level measures the change of the total

expression of all the transcripts in this gene (differential gene expression level). At the

transcript level, the difference in the relative proportion of alternative transcription

paths reflects the regulation on the expression of individual transcripts (differential

gene transcription). In many cases, these two types of differentiations positively cor-

relate, because the overall expression level of a gene is made up additively of the

expression levels of all the transcripts that the gene code. The up/down-regulation of

one or more transcripts may result in the up/down-regulation of the entire gene. How-

ever, the transcript-level differential expression analysis, the differential transcription

analysis, may answer two additional questions of high importance — which subset of

the transcripts in the genes have been regulated from one condition to another, and

whether the on/off of one subset of transcripts associates with the off/on of another

subset of transcripts in the gene. While the former provides much higher accuracy

and a much higher resolution about expression regulation, which may directly point

to prominent protein isoforms, the latter may reveal the phenomenon of “isoform

switching”, which may help understand the regulation network.

Therefore, we have developed separate statistical test procedures for the detection

of differential expression at these two levels. In this chapter, we focus on the group-

wise statistical analyses, in which the grouping of the samples is pre-assumed and the

aim is to test the change of gene/transcript expression from one group to another.
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Let S1, S2, · · · , Sk denote the k groups of samples in the dataset. For example,

a dataset with 2 sample groups may compare a diseased group to a normal control

group, and a dataset with more than 2 sample groups may compare among certain

tumor samples classified as different subtypes. For a sample group Si, let ni be the size

of the group, the number of samples classified as group i. Let Si = {s1i , s
2
i , · · · , s

ni
i }

denote set of samples in Si.

5.4.1 Two-group differential transcription

We first consider the scenario of two-group comparison, that is, k = 2.

Transcription profile characterized by isoform proportion. Within every

sample, the transcription is profiled at every ASM, the loci where the transcripts

of a gene diverge. Let Q1 = {q1
1,q

2
1, · · · ,q

n1
1 } and Q2 = {q1

2,q
2
2, · · · ,q

n2
2 } denote

the estimated path proportion of an ASM ∆ in each sample. The path proportion

distribution qj
i then describes the transcription profile of ∆ in sample sji . Every

distribution qj
i is a t-dimensional real vector with t being the number of alternative

transcription paths in ∆. Every dimension of qj
i should lie in [0, 1], and sum of all

dimensions should equal 1, ‖qj
i‖1 = 1.

Let q̄1 = 1
n1

∑n1

i=1 q
i
1 and q̄2 = 1

n2

∑n2

i=1 q
i
2 denote the mean distributions of the

two sample groups. The hypotheses of the two-group differential transcription test

are then

Null the mean path distributions of the two groups are the same, q̄1 = q̄2;

Alternative the mean path distributions of the two groups are not the same, q̄1 6=
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q̄2.

Jensen-Shannon divergence. We us the Jensen-Shannon divergence (JSD) Lin

[1991] to quantify the dissimilarity between two distributions as a real value between 0

and 1. Let p = (p1, · · · , pt)T and q = (q1, · · · , qt)T be two t-dimensional distributions.

The Jensen-Shannon divergence (JSD) is calculated as

JSD(p||q) =
1

2
(KLD(p||µ) +KLD(q||µ)) , (5.4)

where µ = 1
2
(p+ q) is the mean distribution of p and q, and KLD is the Kullback-

Leibler divergence (Kullback and Leibler [1951]) defined as

KLD(p||q) =

t
∑

j=1

pj log
pj
qj
. (5.5)

The difference of transcription between two samples si1 and sj2 is then measured by

the metric the square root of the Jensen-Shannon divergence,
√

JSD(qi
1||q

j
1).

Test statistic for differential gene transcription.

To select significant differences in transcription, we look for ASMs with significant

difference in path distributions between the two groups but consistent path distribu-

tions within each group. We define the between-group difference as the divergence

between the group mean distributions,

x∆ =
√

JSD(q̄1||q̄2). (5.6)

The within-group variance of each group is defined as

s∆ =

√

√

√

√c[

n1
∑

j=1

JSD(qj
1||q̄1) +

n2
∑

j=1

JSD(qj
2||q̄2)], (5.7)
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where c = n1+n2

n1n2(n1+n2−2)
is the normalization constant.

Abundance estimation on ASMs with low expression often associates with higher

instability. Therefore, we add σ∆ as a penalty for low expression, based on a logistic

function of the averaged estimated expression of the ASM Γ∆,

σ∆ = (2−
2

1 + e−φΓ∆
) · smax, for Γ∆ ≥ 0, (5.8)

where φ adjusts the penalized expression range of low ASM expression (e.g., φ = 1

for penalizing ASMs with estimated expression less than around 6 while assigning

negligible penalty to ASMs with higher expression) and smax denotes the largest

variance among all ASMs in the data.

Therefore, the relative difference in transcription of an ASM ∆ is in the form

d∆ =
x∆

s∆ + σ∆
, (5.9)

measuring the extent how the distributions over alternative paths within the ASM

consistently differ between the two groups.

Permutation test. An empirical distribution of relative difference can be ob-

tained by calculating test statistics after permuting samples across groups Tusher

et al. [2001]. Suppose totally M ASMs are tested for differential transcription. The

relative transcriptional difference is calculated for every ASM, and the order statistics

are collected, d(1) ≤ d(2) ≤ · · · ≤ d(M). Under each permutation p, order statistics of

relative differences could also be calculated in the same way: d∗p(1) ≤ d∗p(2) ≤ · · · ≤ d∗p(M).

Averaging order statistics from all permutations, we have the expected relative dif-

ference in transcription: d̄∗(i) =
1
|P |

∑

p∈P d∗p(i) for 1 ≤ i ≤ M , where P is the set of all

permutations and |P | is the number of permutations.
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Statistical significance. Significant changes on transcription are concluded

based on the extent of disagreement between calculated and expected test statis-

tics. Given a threshold δtrans, an ASM with relative transcription difference of d(i) is

accepted to have significant difference on transcription, if |d(i) − d̄∗(i)| > δtrans. The

choice of δtrans is monitored by its associated false discovery rate, which we define

next.

False discovery rate (FDR). At a cutoff of δtrans, the quantity of falsely dis-

covered ASMs in each permutation is estimated as the number of ASMs such that

|d∗p(i) − d̄∗(i)| > δtrans. The FDR for differential transcription is hence estimated as the

averaged number of falsely discovered ASMs over all permutations, divided by the

total number of ASMs.

5.4.2 Differential transcription among more than two groups

Next we discuss the differential transcription test in a dataset with more than 2

sample groups, that is, k > 2.

Let q̄1, q̄2, · · · , q̄k denote the mean distributions of the k sample groups. Let q̄·

denote the grand mean distribution, the averaged mean distribution over all samples

in all groups,

q̄· =

∑k
j=1 nj · q̄j
∑k

j=1 nj

. (5.10)

The hypotheses being tested for the k-group differential transcription are then

Null the mean path distributions of the k groups are all the same, q̄· = q̄1 = q̄2 =

· · · = q̄k;
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Alternative there exist at least two groups whose mean path distributions are not

the same, ∃i 6= j, q̄i 6= q̄j .

The test statistic of differential transcription on ASM ∆ for k > 2 groups is

changed to

x∆ =

∑k

j=1 nj · JSD(q̄j ||q̄·)

k − 1
(5.11)

and

s∆ =

∑k

j=1

∑nj

h=1 JSD(qh
j ||q̄j)

∑k
j=1 nj − k

. (5.12)

The relative difference in transcription of the ASM ∆ is still measured by the

ratio of the difference among group means x∆ against the within-group variance s∆

d∆ =
x∆

s∆ + σ∆
. (5.13)

5.4.3 Differential gene expression

Based on the estimators for gene expression level derived in the previous section, we

use the same method as proposed in SAM Tusher et al. [2001] to test for difference

in gene expression under different conditions (groups).

The relative difference in expression level of a gene i is written as di =
ri

si+s0
, which

measures the ratio of difference among group means over within-group variances. A

normalization term s0 learned from data Tusher et al. [2001] is added to the denom-

inator in case the variances are too small. Because genes with low expression often

have small variance, this normalization term also asks for larger gap on group means

from lowly expressed genes to evidence significant difference. Comparing expression
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level of gene i in two groups of samples, let x11, x12, · · · , x1n1 be estimated gene

coverage of gene i in group 1 and x21, x22, · · · , x2n2 be estimated gene coverage in

group 2. The difference between the two group means is written as

ri = x̄2· − x̄1·;

the normalized mean of within-group variance is written as

si =

√

√

√

√c[

n1
∑

j=1

(x1j − x̄1·)2 +

n2
∑

j

(x2j − x̄2·)2],

where c = n1+n2

n1n2(n1+n2−2)
is the normalization constant.

5.5 Simulation studies of group-wise differential transcription analysis

The following set of experiments first evaluated the accuracy of DiffSplice on

datasets simulated on the entire human transcriptome with varying sampling depth

and varying degrees of 5’ or 3’ positional bias. We then compared DiffSplice with the

state of the art methods including Cufflinks and Flow Difference Metric (FDM) on

the simulated dataset used by Singh et al. Singh et al. [2011].

5.5.1 Simulation of RNA-seq datasets.

We developed an in-house simulator to generate two RNA-seq datasets on human

transcriptome. In each dataset, we generated pairs of RNA-seq samples under various

sampling depth or sampling bias. For every sample, the simulator randomly generates

relative expression profiles for the transcripts, based on the user-provided human
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transcriptome annotation. A number of cDNA molecules are then assigned to every

transcript according to its expression level and the size of the dataset. A cDNA

library is hence constructed through steps as amplification and size-selection, and

RNA-seq reads are sampled from the cDNA library.

For every pair of samples, we first calculate their transcriptional difference at each

ASM based on the transcript annotation and expression profiles used in generating

the RNA-seq data, referred to as the profile JSD. The difference in ASM estimated by

DiffSplice directly from the RNA-seq reads is referred to as the DiffSplice JSD. The

profile JSD reflects the ground truth difference in each ASM, while the DiffSplice JSD

is an estimation from sampled reads. We calculate the Pearson correlation between

the two as a measure for the accuracy of the estimated difference, denoted by the

JSD correlation We also consider a complementary measure for every ASM, the mean

squared error (MSE), which calculates the error of the estimated path distribution

from the distribution in the expression profile. We average the MSE from both

samples in a pair-wise comparison and denote as the MSE of path distribution.

5.5.2 Analyzing accuracy on highly complex gene model

We simulated 100 runs of experiments on this gene. In each run, 2 sets of RNA-seq

reads were generated by 2 independently created transcript expression profiles. Every

set of reads had 50K 50bp single-end reads. In Figure 5.2a, every single dot represents

an ASM in one run. All ASMs have the divergence estimated by DiffSplice very close

to the profile divergence, with a Pearson correlation as high as 0.974. This precision

in quantifying sample-sample divergence results from the accuracy in path abundance
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estimation. Figure 5.2b plots the distribution of the MSE between path distribution

for every single ASM. All 6 ASMs have the majority of their MSE below 0.005 with

mean close to 0 and small variances, showing the accuracy of the abundance estimator

developed in DiffSplice.
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Figure 5.2: Evaluation of DiffSplice on simulated dataset of gene VEGFA. (a) Com-
parison between difference calculated from sampling profile and difference estimated
by DiffSplice, measured by the square root of JSD. The Pearson correlation is 0.974.
(b) The mean squared error (MSE) between sampling profile and estimated alterna-
tive path distribution, averaged between the two samples. The abundance estimation
procedure of DiffSplice has very low error on all the 6 ASMs.

5.5.3 Human transcriptome under varying sampling depth.

We first study the effect of the sampling depth on the abundance estimation. We

simulated 10 pairs of samples on human transcriptome, from 10M (10%) reads to

100M (100%) reads. For each sample, 2x75bp paired-end reads with average insert-

size of 100bp were generated. Genes with averaged read coverage per base greater

than 10 were picked to compare the difference by profile and the difference derived by
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Figure 5.3: Evaluation of DiffSplice on simulated dataset under different sampling
depth. (a) Scatterplot of profile JSD and DiffSplice JSD at different sampling depth.
(b) JSD correlation and MSE of path distribution at different sampling depth (from
10% to 100%). (c) MSE of path distribution grouped by different expression quartile.
(d) MSE of path distribution grouped by different discriminative length quartile.
Within each quartile group, the box plot of the MSE is plotted for every read set
(from left to right: the read sets with sampling depth percentile of 10% through
100%).
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DiffSplice. Figure 5.3a shows the scatterplots of profile JSD against JSD estimated

by ASM in read sets of 10M (10%), 40M (40%), 70M (70%), and 100M (100%) reads.

The data with relatively lower sampling depth (e.g. depth = 10%) shows less points

than the data with higher sampling depth because it covers less ASMs. But all sets

have most points close to the diagonal, indicating minimal deviation between profile

JSD and estimated JSD. The correlations range from 0.85 to 0.88 (Figure 5.3b).

Higher JSD correlation is achieved by increasing the sampling depth, while the MSE

of path distribution also decreases. Figure 5.3c separates all ASMs into 4 quartile

groups according to their expression level and compares the distribution of MSE in

each group. ASMs with higher expression separate randomness of read sampling

and result in more stable estimates. As expected, the upper 2 quartiles exhibit better

estimates than the lower 2 quartiles, in terms of both smaller mean and lower variance.

Besides the expression of the ASMs, the variance of the abundance estimator

is also related to the discriminative length, the length of the exonic regions that are

specific to a path in an ASM. Figure 5.3d groups all ASMs into 4 quartiles according to

the discriminative length. ASMs with larger discriminative length are also expected to

be more robust to random sampling errors and have higher accuracy on discriminating

difference between path distributions. The lowest quartile has slightly higher MSE

than the rest 75% ASMs. In contrast, the MSE sharply decreases in all groups,

emphasizing the impact of sampling depth over discriminative length in improving

abundance estimation accuracy.
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5.5.4 Human transcriptome under varying sampling bias.

Methods that estimate transcript abundance are typically designed under the as-

sumption that the RNA-seq fragments are sampled independently and the sampling

position is uniformly distributed along the transcript from which the fragments origi-

nate. The transcript inference and thereafter the evaluation of differential expression

may be altered if sampling bias is introduced by sample preparation protocols. Two

types of sampling bias are commonly observed in RNA-seq data, namely, position-

specific bias and sequence-specific bias Bohnert and Rätsch [2010], Srivastava and

Chen [2010a], Olejniczak et al. [2010], Roberts et al. [2011].

We specifically looked at 3’ bias that is a typical position-specific bias. To simulate

the data, we introduce a parameter β to represent the degree of sampling bias, such

that 1 + β equals to the ratio of the sampling probability at the last base in the 3’

end of a transcript over the sampling probability at the first base in the 5’ end of

the transcript. The sampling probability at a middle bases t is then calculated as a

linear interpolation, Probt = Prob5′ · (1+ β · lt/l), where lt denotes the distance from

the base t to the 5’ end of the transcript and l denotes the length of the transcript.

We simulated 11 read sets on human transcriptome under β from 0 to 2.0. Fig-

ure 5.4a shows the scatterplots of the profile JSD against the DiffSplice JSD in read

sets under no bias and bias of β = 0.6, 1.2, and 1.8. All sets have most estimated JSD

close to profile JSD, with no significant effect of sampling bias. This is consistent with

Figure 5.4b where the correlations range from 0.878 to 0.887. The MSE is slightly

lower when no bias is introduced but remains roughly unchanged as β increases, in-
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Figure 5.4: Evaluation of DiffSplice on simulated dataset in the presence of position-
specific sampling bias. (a) Scatterplot of profile JSD and DiffSplice JSD at different
β. (b) JSD correlation and MSE of path distribution at different β (from 0 to 2). (c)
MSE of path distribution grouped by different expression quartile. (d) MSE of path
distribution grouped by different discriminative length quartile. Within each quartile
group, the box plot of the MSE is plotted for every read set (from left to right: the
read sets with beta of 0 through 2).
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dicating the robustness against altered sampling distribution of the alternative path

estimation by DiffSplice. In Figure 5.4c and Figure 5.4d, ASMs are again grouped into

quartile groups according to their expression level and discriminative length. While

the expression level still dominates the accuracy of path abundance estimation, no

significant effect of sampling bias is observed in all groups.

5.5.5 Differential transcription between two groups of samples.

We further applied our method to the two simulated datasets used in the evaluation

of FDM Singh et al. [2011]. Over 2100 genes with at least two transcripts were sim-

ulated in the two tissues, each tissue having four replicates. The square root of the

JSD between transcript profiles of the two tissues was calculated for each gene to

suggest the “true” transcriptional difference. The coverage of each gene was calcu-

lated to measure the expression level. Genes with coverage larger than 1 were chosen

for comparison. In addition to DiffSplice, three other methods (FDM, Cuffdiff with

annotation, Cuffdiff without annotation) were also applied on this dataset. FDM

was run using no transcriptome annotation information. With FDR less than 0.01,

DiffSplice reported 887 genes with significant difference on transcription. At confi-

dence level of 0.05, FDM, Cuffdiff with annotation, and Cuffdiff without annotation

reported 722, 931, and 530 differentially transcribed genes, respectively.

Figure 5.5 plot the genes coordinated by the square root of its profile JSD and

the logarithm of its coverage. The genes with significant differences on transcription

identified by each method are represented by red dots. The genes with insignificant

differences are represented by blue circles. Along the x-axis, the majority of the sig-
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Figure 5.5: Comparison among DiffSplice, FDM, and Cufflinks on simulated dataset
of human transcriptome: scatterplot of coverage against profile JSD for results of (a)
DiffSplice, (b) FDM, (c) Cufflinks with annotation, and (d) Cufflinks without anno-
tation, respectively. The majority of the differentially transcribed genes identified
by DiffSplice (plotted as red dots) have square root of profile JSD greater than 0.2
and log coverage greater than 0.5. Setting the genes with square root of profile JSD
larger than 0.25 and coverage larger than 5 to have significant difference in profile,
DiffSplice achieves a sensitivity of 92%, higher than those of FDM (80%), Cuffdiff
with annotation (81%), and Cuffdiff without annotation (58%).
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Figure 5.6: Comparison among DiffSplice, FDM, and Cufflinks on simulated dataset
of human transcriptome: scatterplot of variance against profile JSD for results of (a)
DiffSplice, (b) FDM, (c) Cufflinks with annotation, and (d) Cufflinks without annota-
tion, respectively. Most of the differentially transcribed genes identified by DiffSplice
(plotted as red dots) have variance less than 0.1. Setting the genes with square root
of profile JSD larger than 0.25 and variance less than 0.1 to have significant difference
in profile, DiffSplice reaches a sensitivity of 89%, higher than those of FDM (74%),
Cuffdiff with annotation (80%), and Cuffdiff without annotation (40%).
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nificantly differentiated genes identified by DiffSplice have large profile JSD (square

root of profile JSD > 0.2), showing that DiffSplice correctly captures transcriptional

divergences between the two tissues. Along the y-axis, most significant genes identi-

fied by DiffSplice have relatively high coverage. This follows the fact that differences

present in highly expressed genes are less likely to occur randomly or be introduced

by sampling error and hence have higher confidence. We calculate the sensitivity of

all four methods at genes that have large profile difference as well as high expression,

for example, the region with square root of profile JSD larger than 0.25 and coverage

larger than 5. Among the 548 genes in that region (the up-right part), DiffSplice

identified 506 genes as significant differences, with a sensitivity of 92% (506 out of

548). This sensitivity is ten percentage points higher than those of FDM (80% or

437 out of 548) and Cuffdiff with annotation (81% or 443 out of 548), and thirty

percentage points higher than that of Cuffdiff without annotation (58% or 316 out

of 548). To assess the rate of false positives, we further calculate the precision for

every method, defined as the proportion of the true significant genes called by each

method in all the significant genes called by the method. The precision of DiffSplice

(57%) is close to those of FDM (61%) and Cuffdiff without annotation (60%) and is

nine percentage points higher than that of Cuffdiff with annotation (48%).

The test statistic of DiffSplice also takes into account the variance of alternative

path distributions among the replicates in each group. Figure 5.6 plot the genes

coordinated by the square root of its profile JSD and the within-tissue variance of

its transcript profile. The genes with significant or insignificant differences are still

represented by red dots and blue circles, respectively. Almost all significant genes
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identified by DiffSplice have low profile variance compared to profile divergence. We

also calculate the sensitivity of all four methods at genes that have large profile

difference as well as small within-tissue variance, for example, the region with square

root of profile JSD larger than 0.25 and variance less than 0.1. Among the 952 genes

in that region (the bottom-right part), DiffSplice identified 849 genes as significant

differences, with a sensitivity of 89% (849 out of 952). This sensitivity is fifteen

percentage points higher than that of FDM (74% or 705 out of 952), nearly ten

percentage points higher than Cuffdiff with annotation (80% or 764 out of 952), and

forty percentage points higher than that of Cuffdiff without annotation (49% or 462

out of 952). DiffSplice also has a precision (96%) close to FDM (98%) and clearly

higher than Cuffdiff with annotation (82%) and Cuffdiff without annotation (87%).

5.6 Experiments with clinical RNA-seq datasets

5.6.1 Lung differentiation dataset

The human lung airway epithelium lies on the lung-environment interphase, serving

as the important physical barrier against invading pathogens. It is composed of

various cell types, including ciliated cells, mucus-secretory goblet cells, and basal

cells, differentiated from specialized cells in varying numbers. We hypothesized that

genes expression changes, including the differential expression of alternative spliced

isoforms, are key in the mucociliary cell differentiation and function. Thus, we have

sequenced mRNAs from primary human bronchial cells at the early (day 3) and late
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(day 35) differentiation stages respectively by high-throughput sequencing. Three

biological replicates were used in each group (day 3 versus day 35). Following the

manufacturer’s instruction, mRNA libraries were made for each sample, and around

28 million 76bp single-end reads were generated from each sample for analysis. The

biological findings from this experiment will be presented in another report.

The RNA-seq reads were mapped by MapSplice 1.15.1 [Wang et al., 2010a] to the

human reference genome (hg19). About 94% were mapped for each sample. DiffSplice

was then performed on these read alignments. Cufflinks+Cuffdiff pipeline (version

1.1.0 with bias correction) was also run on the same read alignments with results

both using and not using transcriptome annotation generated for comparison.

As shown in Figure 5.7a, DiffSplice identified 2077 genes that have differential

gene expression level between day 3 and day 35 at FDR < 0.01 and requiring the fold

change larger than 2 (up-regulated) or less than 1
2
(down-regulated). This number is

similar to the results obtained from the SAM analysis Tusher et al. [2001]. At day

35, 1429 genes were tested to have significantly higher expression level than at day 3,

while 648 genes were tested to have significantly lower expression level than at day 3.

This observation has indicated active metabolism biogenesis process occurring during

the airway epithelium differentiation. At FDR < 0.01, DiffSplice also identified 498

genes exhibiting significant differentiation on alternative transcription. Among them,

109 genes had significantly altered overall gene expression, whereas the rest 389 genes

were differentially transcribed while their total gene expression remains at the same

level. We randomly selected genes with the inter-group sqrt of JSD > 0.3 for qRT-

PCR validation (Supplementary Figure 6). The expression profiles of two validated
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Figure 5.7: Comparison between DiffSplice and Cufflinks on the lung differentiation
dataset. (a) Differential expression discovered by DiffSplice using MapSplice align-
ment without annotation. (b) Comparison among differentially transcribed genes
discovered by DiffSplice, Cufflinks with annotation, and Cufflinks without annota-
tion. (c) Percentage of significant genes with differential transcription against num-
ber of transcripts. (d) Number of significant genes with differential transcription
against percentage of samples with gene coverage < 3 in each group. (e) Differential
transcription in gene PI4KB, identified by DiffSplice but missed by Cufflinks without
annotation.

genes TMC5 and LMO7 are included in Figure 5.8 and Supplementary Figure 7.

We compared the differentially transcribed genes identified by DiffSplice and Cuf-

flinks+Cuffdiff. Cufflinks+Cuffdiff with annotation reported over 7000 genes that

have significant differential transcription events between day 3 and day 35 while Cuf-

flinks+Cuffdiff without annotation only reported around 3000 genes.In comparison,
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Figure 5.8: Alternative transcription start sites identified by DiffSplice in gene TMC5.
The relative expression of isoform passing ASM1.path4 increased significantly from
day 3 to day 35. The change has been validated by qRT-PCR experiment (Supple-
mentary Figure 6). Meanwhile, the overall gene expression level also significantly
increased with a fold change around 11.
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Figure 5.9: DiffSplice discovers alternative splicing variants present in the data. (a)
Number of ASMs discovered by DiffSplice at different expression level. Besides around
2,400 ASMs that exactly match annotated ASMs, DiffSplice discovered over 2,000
ASMs where only subsets of annotated splicing variants were present, nearly 200
ASMs with novel splicing variants added to annotated alternative splicing events,
and more than 700 ASMs that were completely new to the annotation. (b) Novel
alternative splicing in gene STRA13, identified by DiffSplice but missed by Cufflinks
both with and without annotation. DiffSplice discovered a novel exon in the anno-
tated intron region between the 2nd and the 3rd exon of STRA13. Splice junctions
evidenced that the exon was alternatively excluded (path 1) or included (path 2)
in transcripts of this gene, and the skipping ratio was tested to have significantly
decreased from day 3 to day 35.
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DiffSplice reported 498 genes with 77% and 54% overlapped with results of Cuf-

flinks+Cuffdiff with and without annotation respectively. The result is shown as

Venn-diagram in Figure 5.7b. Next we detail the major issues from the investigation

of the discrepancy.

Effect of transcription complexity. In general, genes with larger number of

isoforms tend to have more splicing events, therefore have higher chance to be dif-

ferentially transcribed. Nevertheless, having the majority of the genes detected to

be significantly different indicates a high level of false positive discovery rate. In

Figure 5.7c, we divided genes into groups according to the number of isoforms and

plotted the percentage of genes detected to be significant as a function of the num-

ber of isoforms. As high as 80% of genes with more than 5 isoforms were identified

as having significant differential transcription by Cufflinks+Cuffdiff with annotation,

and around 50% to 75% of genes with more than 5 known isoforms were identified

as significant by Cufflinks+Cuffdiff without annotation. The decreased number of

significance called by Cuffdiff without annotation correlates with the typically lesser

number of reconstructed transcripts in a gene than the number of annotated tran-

scripts. In contrast, the percentage of genes detected to be differentially transcribed

is typically below 10% with DiffSplice with a trend of raising percentage as transcrip-

tome complexity increases.

Transcripts in genes with high transcription complexity are difficult to infer and

quantify, requiring a high read coverage to be reliable. Inaccurate transcript inference

and/or quantification may not only lead to false positive discovery of the differentially

transcribed genes but also miss genes that are truly differentially transcribed. In gene
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PI4KB, DiffSplice discovered two ASMs as shown in Figure 5.7e. The first ASM starts

from the 4th exon (from the 5’ end) and ends at the 6th exon, alternatively excluding

or including the 5th exon. The second ASM spans from the 1st exons to the 4th

exon, alternatively transcribing the 2nd and the 3rd exon. The first ASM was tested

to have significant difference in transcription by DiffSplice, which had significantly

higher exon skipping ratios at day 3. Without annotation, Cufflinks failed to point out

this difference. Cufflinks took the combination of the two alternative splicing events

and assembled 7 transcripts, containing 3 spurious transcripts compared to RefSeq

annotation. In addition to the inconsistency in assembled transcripts, the estimated

transcript abundance by Cufflinks did not reflect the shift on expression. Combining

the transcripts that included the 5th exon (TCONS 00003827, 00003831, 00003833),

the total expression of the three transcripts was 8.63 at day 3 and 9.27 at day 35

(in RPKM), which did not match the observed increase on the expression of the 5th

exon. Also the overall expression of all the 7 assembled transcripts fell from 18.8 (day

3) to 16.6 (day 35), which did not match the observation that the overall expression

was actually higher in day 35. In gene TMC5, DiffSplice discovered an alternative

transcription start event with 4 alternative start sites and an exon skipping event

(Figure 5.8). The alternative start event was tested to have significantly higher

abundance of the path ASM1.path4 at day 35 (48.9%) than day 3 (14.7%). This

finding was consistent with the result of qRT-PCR experiment that the alternative

start site corresponding to ASM1.path4 had its abundance at day 35 at least twice

as high as its abundance at day 3. This gene was also found having differential

expression level, with its expression at day 35 more than 10 times higher than that
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at day 3.

Effect of coverage and variance in replicates. When determining differential

transcription, read coverage needs to be sufficiently high to make reliable inference

on the transcript expression. In Figure 5.7d, we plot the number of genes that were

called to be significantly different in transcription against the number of samples

with exceptionally low expression (e.g. gene coverage < 3). The three methods in

comparison detect similar percentage of significant genes when the majority of the

samples are well expressed. However, Cufflinks+Cuffdiff calls hundreds of genes as

significantly differentiated when almost all samples in a group are barely expressed

at all.

Besides, Figure 5.7d also indirectly shows high within-group variance among repli-

cates. In testing of differential expressed or transcribed genes, the variance among

samples within the same group is expected to be low and should be well controlled.

More than 3 out of 9 replicates in one of the comparison groups had extremely low

coverage in 269 genes detected by Cufflinks+Cuffdiff with annotation and 128 genes

detected by Cufflinks+Cuffdiff without annotation, demonstrating high within-group

variance of these genes.

Novel alternative splicing. Since DiffSplice takes only RNA-seq read align-

ments as input and relies on no annotation, it captures splicing events that are only

relevant to the given mRNA samples and has the capability of discovering novel al-

ternative transcripts. We categorize an ASM detected by DiffSplice into 4 types: the

ASM exactly matches an annotated ASM; the ASM is a subgraph of an annotated

ASM; the ASM partially overlaps with an annotated ASM; the ASM is not found

117



www.manaraa.com

Scale

chr1:

Gene

ASM1.path1

ASM1.path2

ASM1.path3

ASM2.path1

ASM2.path2

CD46

CD46

CD46

CD46

CD46

CD46

CD46

CD46

10 kb

207930000 207935000 207940000 207945000 207950000 207955000 207960000 207965000

MCF7_SM6_HS

MCF7_SM4_HS

MCF7_11_HS

MCF7_5_HS

SUM102_12_HS

SUM102_10_HS

SUM102_SM6_HS

SUM102_SM7_HS

Di!Splice splice graph

 

RefSeq Genes

MCF7_SM6_HS

379 _

0 _

MCF7_SM4_HS

221 _

0 _

MCF7_11_HS

298 _

0 _

MCF7_5_HS

340 _

0 _

SUM102_12_HS

610 _

0 _

SUM102_10_HS

581 _

0 _

SUM102_SM6_HS

833 _

0 _

SUM102_SM7_HS

856 _

0 _

Scale

chr14:

Gene

ASM1.path1

ASM1.path2

ASM1.path3

NPC2

MIR4709

5 kb

74950000 74955000 74960000

MCF7_SM6_HS

MCF7_SM4_HS

MCF7_11_HS

MCF7_5_HS

SUM102_12_HS

SUM102_10_HS

SUM102_SM6_HS

SUM102_SM7_HS

Di!Splice splice graph

 

RefSeq Genes

MCF7_SM6_HS

752 _

0 _

MCF7_SM4_HS

644 _

0 _

MCF7_11_HS

665 _

0 _

MCF7_5_HS

1010 _

0 _

SUM102_12_HS

2098 _

0 _

SUM102_10_HS

1532 _

0 _

SUM102_SM6_HS

1936 _

0 _

SUM102_SM7_HS

2279 _

0 _

(a) (b)

Figure 5.10: DiffSplice on the breast cancer dataset. (a) Differential transcription on
skipped exon in gene CD46 identified by DiffSplice. DiffSplice discovered two ASMs
in this gene. The second ASM that alternatively skipped the 13th exon was tested
to have significantly higher skipping ratio in MCF7 samples. This transcriptional
difference has been validated by qRT-PCR experiment. (b) Differential transcription
on retained intron in gene NPC2 identified by DiffSplice. The exon-skipping event
spanning the left three exons was tested to have significantly higher skipping ratio
in MCF7 samples. The nested intron-retention in the left two exons was also tested
to have significantly higher ratio of retaining the intron in MCF7 samples. The
differential transcription in the intron-retention event has been validated by qRT-
PCR experiment.
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in the annotation. The histogram of each category at varying coverage is shown in

Figure 5.9a. The ASMs detected by DiffSplice show high consistency with those gen-

erated from known annotation. Among the totally 5,556 ASMs found be DiffSplice,

2,426 ASMs matched an annotated ASM, 2,219 ASMs were subsets of annotated

ASMs. Besides the alternative splicing events present in annotation, we found 174

ASMs with novel paths added to annotated ASMs and 736 novel ASMs. For exam-

ple, we discovered a novel exon in gene STRA13, located between the second and

the third exon in the RefSeq annotation (Figure 5.9b). This exon was discovered as

differentially skipped between day 3 (50% skipping ratio) and day 35 (30% skipping

ratio). Because the exon-skipping event in STRA13 is not present in the transcrip-

tome annotation, Cufflinks with annotation did not capture the difference. Cufflinks

without annotation falsely initiated a transcript from the third annotated exon and

did not detect the event either.

5.6.2 Breast cancer MCF7-SUM102 dataset

We further applied DiffSplice to the RNA-seq datasets generated from two breast

cancer cell lines, MCF7 and SUM102 [Singh et al., 2011]. Each cell line group com-

prises of 4 technical replicates and about 80 million 100bp single-ended reads were

sequenced for each replicate. Flow Difference Metric (FDM) was originally applied

to these datasets to detect genes that might have differentially transcribed without

usage of transcriptome annotation information [Singh et al., 2011]. At FDR < 0.01,

DiffSplice identified 6103 genes with significant difference on expression level and 2507

genes with significant difference on transcription between the two cell lines, includ-
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Figure 5.11: A novel deletion in gene REEP4 found differentially transcribed be-
tween SUM102 and MCF7 by DiffSplice. In SUM102, 19 bases were deleted in al-
most all transcripts compared to the reference genome. In MCF7, the deletion was
only present in approximately half of the transcripts. This novel deletion has been
validated through resequencing.
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ing 1353 genes with both differences. For genes that were differentially transcribed,

DiffSplice had 955 (38.1%) shared with those discovered by FDM (Supplementary

Section 6.3).

DiffSplice successfully identified the two genes CD46 (Figure 5.10a) and NPC2

(Figure 5.10b) that were originally validated by qRT-PCR in FDM paper. However,

unlike FDM, DiffSplice directly pinpoints the location of alternative splicing events

that are differentially expressed, consistently with those chosen for the qRT-PCR vali-

dation. For example, in the exon-skipping event found in CD46 (Figure 5.10a), the av-

eraged estimated proportion of the path that included the 13th exon (chr1:207963598-

207963690) was 34.7% in the SUM102 group and 13.9% in the MCF7 group. This re-

sult was consistent with the observation in the qRT-PCR experiment that the skipped

exon had more than two fold higher expression level in SUM102 than in MCF7. In

gene NPC2, DiffSplice discovered two alternative splicing events, one nested within

the other (Figure 5.10b). The intron retention occurs between the last two exons was

found present primarily only in MCF7 samples. This ASM was further nested in a

larger exon-skipping event spanning the last 3 exons, where the 2nd exon was alterna-

tively spliced with a significantly lower skipping ratio in SUM102 samples. The first

intron-retention event was picked for qRT-PCR validation. The averaged estimated

proportion of the path that retained the intron (chr14:74946992-74947388) was 0.5%

in the SUM102 group and 17.9% in the MCF7 group, consistent with the experimen-

tal observation that the retained intron had at least ten fold higher expression level

in MCF7 than in SUM102.

Besides alternatives spliced events, DiffSplice can be generalized to detect struc-
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tural variations whose presence is different across two comparison groups. 42 genes

were detected to have a small insertion/deletion that varies between MCF7 and

SUM102. As shown in Fig. 5.11, a 19-base novel deletion was discovered in the

last exon of gene REEP4. The averaged estimated proportion of the path that in-

cluded the deletion was over 99.2% in SUM102 samples. The estimated proportion

of the deletion fell to 49.9% as turning to MCF7 group. We directly resequenced the

genomic DNA as well as the cDNA derived from the mRNA of the cell lines and val-

idated this novel deletion. These deletions evidenced the genomic variation present

in cancer cell lines and may contribute to prognostic differences together with other

differential expression events.

Copyright c© Yin Hu, 2013.
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Chapter 6 Differential Splicing Analysis on Large-scale Datasets

6.1 Introduction

The RNA-seq technologies may comprehensively and accurately profile the transcrip-

tome of a cell at a specific condition. However, detecting the transcriptomic charac-

teristics of one individual or a small group of individuals may not lead to improved

understanding of cell functions such as cell differentiation and progression and genetic

diseases such as cancers. The sample size is the key to the expansion of knowledge

and its population-wide application.

Fortunately, the price of sequencing has dropped. Nowadays, an RNA-seq exper-

iment typically costs less than $1,000, comparable to the cost of microarray. This

allows wider applications of sequencing technologies. Several large-scale projects have

been initiated in order to decipher various types of human diseases as well as the func-

tion of human genome, such as TCGA (The Cancer Genome Atlas), ICGC (Inter-

national Cancer Genome Consortium), CCLE (The Cancer Cell Line Encyclopedia)

and PCBC (Progenitor Cell Biology Consortium). The TCGA project, for example,

was launched by the National Cancer Institute and the National Human Genome Re-

search Institute, both part of the National Institute of Health, in 2006. This project

aims to comprehensively sequence, characterize and analyze more than 20 types of

cancer, types with poor prognosis and overall public health impact. A total of more

than 4,000 samples have been sequenced, providing an unprecedented opportunity to
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discover the mechanism of cancer.

The massive amount of data is also changing the biomedical research from hypothesis-

driven to data-driven. Analyses are carried out directly on the raw data, with partial

or little reliance on existing reference. The exploration of biological insights is being

greatly accelerated.

Despite these exciting advancement of sequencing technologies, the scale and com-

plexity of the data have imposed three central difficulties in transforming the massive

raw data to potential biological findings.

Most directly, the increased sampling depth and sample size lead to trillions of

reads, which require significant computing time and storage. For example, the RNA-

seq data of TCGA consists of ∼ 5000 samples, more than 1 trillion reads and ap-

proximately 50 TeraBytes of binary files. A typical pipeline, such as Cufflinks, may

take one day to analyze one sample, making it expensive to process the data for even

once.

More importantly, adding more samples not only requires more computing re-

sources, but also leads to (sometimes exponentially) increased complexity. For exam-

ple, a large RNA-seq dataset may introduce a list of putative splice junctions several

folds longer than the list of annotated junctions, further resulting in tens or even

hundreds of possible transcripts in a gene. The later transcript quantification and

differential test steps then become questionable.

Lastly, the statistical power brought by the large sample size needs further explo-

ration. Current methods for differential transcription typically conduct comparisons

between two samples, e.g., one normal versus one tumor or one control versus one
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drugged. Some methods perform analysis between two groups of samples, but the

sample size in each group is typically less than 20. The heterogeneity in the samples

may also need analysis beyond the classical group-wise hypothesis tests.

We have developed a novel pipeline for the differential transcription analysis on

large-scale RNA-seq datasets. This pipeline utilizes a joint analysis model that sum-

marizes all samples with a single graph, which can leverage information from all

samples. A suite of components have been designed to target the challenges above,

including a preprocessing step that accelerates the construction of the graph and

alleviates the data storage burden, approaches of splice junction filtering and exon

boundary detection that clean the noise and insignificant signals in the data, a multi-

group test statistic and a clustering approach that detects transcription patterns

across sample groups. We have demonstrated the differential splicing analysis on a

set of 819 RNA-seq samples, which came from the breast cancer (BRCA) analysis of

the TCGA project. These samples constitute a large dataset with a total of 6 Ter-

aBytes of data in binary format, 5-10 GigaBytes per sample. Every sample contains

120M to 250M 2 × 50bp paired-end reads. These samples have also been clinically

classified as normal (91) and tumor (728), with 5 tumor subtypes determined by

clinical characteristics and gene expression: Basal (123), HER2 (60), LumA (359),

LumB (170) and normal-like (16).

6.2 The joint transcriptome analysis of all samples

Two possible pipelines may be built upon current single-sample transcriptome analy-

sis methods. Relying on transcript annotation, a transcript abundance quantification
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Figure 6.1: An overview of the scalable pipeline for alternative splicing and differential
analysis on large-scale RNA-seq datasets. The expression information contained in
the read alignments (BAM files) is combined via a distributed preprocessing step.
The transcription analysis is then conducted on the unified ESG that represents all
samples. The expression of splice isoforms is quantified for each sample. Differential
analysis is lastly applied on the basis of the estimated isoform expression.
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method (such as RSEM [Li et al., 2010a]) can be applied on every sample, followed

by the application of a differential test method (such as DESeq [Anders and Huber,

2010]) to determine the transcripts whose expression has changed significantly. This

approach, however, prevents the discovery of novel transcripts and may cause inac-

curate quantification due to expression of unannotated isoforms. Therefore, it is not

ideal for the discovery of disease biomarkers. Alternatively, transcripts present in

each sample, including novel transcripts, can be reconstructed ab initio using meth-

ods such as Cufflinks [Trapnell et al., 2010]. Nonetheless, transcripts that have low

expression in some sample may be missed in the sample due to computational regular-

ization. None of these two approaches consolidates the transcriptome-wide discovery

using information benefited from a large RNA-seq sample size.

Computationally, reconstruction and quantification of full transcripts are unsolved

problems, difficult and inaccurate because of the inadequate read length. The quan-

tification may be underdetermined, meaning that a unique solution to the transcript

abundance does not exist.

To overcome the above shortages, we have developed an approach for integral

differential splicing analysis that considers all samples jointly. The core algorithm

summarizes the expression information, such as splice junctions and read coverage,

of every individual sample together as a unified splice graph (Figure 6.1). This gives

more accurate detection of exon boundaries and splice junctions, and allows the ex-

amination of all alternative splicing patterns in one graph. Efficient algorithms for

alternative splicing detection can then be applied on the unified splice graph, without

the need to repeat on every single sample. By focusing on the alternative splicing
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events, the method circumvents the need of transcript-level reconstruction and esti-

mation, thus may provide more accurate inference than directly using transcripts as

basis. Lastly, the expression in each sample is estimated individually, and different

samples can be compared on the same graph with their sample-specific weights. This

procedure will highlight differential splicing events, the alternative splicing events

that exhibit significantly different splicing ratios between different samples or be-

tween different subtypes.

6.2.1 Preprocessing of the alignment files

The read coverage on the genome is necessary toward the construction of a splice

graph. However, parsing the read alignments one by one is time-consuming, because

every read accounts for a separate calculation, further complicated by spliced align-

ments. Importantly, these expensive calculations need to be repeated every time the

data is re-analyzed, making any transcription-level analysis a considerable burden.

In order to address this, we introduce a preprocessing step to summarize the raw

data with less records, in a format that simplifies the computation of read coverage.

This step is done by splitting an read alignment into exonic segments that represent

continuous sequences covered by the reads and splice junctions that connect the exonic

segments. Same entries, such as same splice junctions and exonic segments that cover

a same short exon, can be merged into one entry, associated with the count of its

presence.

We have designed a MapReduce scheme to parallelize the preprocessing step:
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Mapper Every worker node parses the read alignments of one sample at a time,

extracts the exonic segments and splice junctions of the sample, and maintains

a count table for every unique entry;

Reducer The master node combines the count tables of all samples.

Under this scheme, samples can be parsed simultaneously at distributed computing

cores. The information from all samples, summarized as a count table for each sample,

will be combined using a linear-time merge sort-like algorithm.

Specifically for the BRCA dataset, it costs > 20 days for directly parsing all read

alignment files, with 20 computing cores. Using the preprocessing step, the same

task can be completed in < 7 days under the same computing power. Notably, it

is not necessary to repeat the preprocessing step, which enables fast analyses for

< 0.5 day. At the same time, the storage can be reduced from ∼ 6TB to ∼ 730GB,

approximately 10% of its original size.

6.2.2 The filtering of spurious splice junctions

The alignments of the RNA-seq short reads often suggest a large number of splice

junctions. For example, a total of 1,350,669 putative splice junctions have been

detected by the reads in the BRCA dataset, including 222,248 (16.5%) in existing

annotation and 1,128,121 (83.5%) not in annotation. As a comparison, there are only

The unannotated junctions may imply novel splice isoforms and novel mRNA tran-

scripts that have not been cataloged. However, they may also result from sequencing

errors or mapping errors.
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It is not trivial to separate true junctions from those falsely detected. The most

informative and commonly used feature for the measurement of a splice junction’s

existence is the number of read alignments that span the junction, denoted as the

number of spanning reads or simply the support. For example, splice junctions that

have high support (e.g., > 10) tend to be known. Splice junctions that have low

support, on the other hand, mostly have not been cataloged in existing knowledge.

Nonetheless, a specific cutoff on the support is not sufficient, because the expression

of different genes can vary in magnitudes and it is often not practical to locate a

“good” cutoff that balances the specificity for highly-expressed genes and the sensi-

tivity for lowly-expressed genes. More importantly, even when a satisfying filter can

be achieved, the threshold only applies to the specific dataset.

We have developed an adaptive filter for putative splice junctions, which utilizes

four metrics to evaluate the confidence and significance of a splice junction detected by

the RNA-seq read alignments. The metrics are defined based on both the sequences

associated with a splice junction and its relative expression as compared to the gene.

Anchor complexity The genome is a 3 billion bases-long sequence of just 4

different nucleotides. Therefore, different regions of the genome may have highly

similar sequence, especially for cases such as pseudo-genes. While the ambiguity of

alignment may be relatively low for an entire read, which is typically longer than 50

bases, there may exist multiple places with similar sequences for the alignment of a

read fraction due to splice (an anchor of the splice). Therefore, a splice junction may

be spurious if all the spliced alignments that span the junction have short anchors,

e.g., less than 15 base pairs. In such case, the sequence of the anchor can then be
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compared to the sequences of the genome, using a method such as BLAT [Kent, 2002].

Splice junctions with only low complexity anchors detected may be filtered.

Expression of anchor exons A splice junction conjoins two separated exons

when the gene is transcribed. Therefore, both anchor exons of a splice junction should

have sufficient expression in order to evidence the expression of the corresponding

transcript. In our application, an anchor should have a minimum read coverage of 1

in order to be distinguished from noise.

Expressed sample percentage The support of a junction is the most direct

evidence of the existence of the junction in the sample. However, the absolute support

is often not comparable across genes and may not be used as a filter cutoff, because

genes may differ greatly in their expression level. In genes with low expression, true

and important splice junctions may have few reads spanned. Therefore, we calculate

the relative support, to indicate the relative expression of a splice junction as compared

to the expression of the exons connected by it:

RS(j) =
support of j

min(read coverage of ej5, read coverage of ej3)
, (6.1)

where ej5 and ej3 are the donor and acceptor exons of j, respectively. Then the

expression of a splice junction in a sample can be defined with a cutoff on the relative

expression τ . The expressed sample percentage given τ , ESP − τ , is calculated as

ESP − τ =
# of samples in which support of j > τ

Total # of samples
, (6.2)

which is equivalent to 1− percentile(τ).

Top α% sample expression. At last, some splice junctions may not be present

in the majority of samples, but they may have high expression in a small portion of
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samples. These junctions may encode important transcript isoforms unique to a small

group of samples. Therefore, we further calculate the (1−α)-percentile of the relative

expression in all samples, denoted as TOP − α, to gauge the relative expression of

the splice junction in the top α% highly expressed samples.

Thereafter, we construct a splice junction filter that also leverages the information

of gene splice structure.

1. Form a trusted list. The anchor complexity and anchor exon expression are

used to distinguish splice junctions that have high probability to be real. The

metrics ESP − τ and TOP −α are then to rank the splice junctions considered

true and select a trusted list with significant relative expression.

2. Construct a reference gene model. The selected splice junctions are used to

build a basic splice graph to represent the gene model. Exons and introns

are recognized according to the position of the splice junctions, and the read

coverage is calculated.

3. Aggregate toward a final list The splice junctions not selected in the first step

tend to have lower confidence or significance. The gene model obtained in step

2 is used to assist consolidating the final splice list with the unselected splices.

In particular, splice junctions that connect existing splice sites in the reference

gene model have higher probability to be real. Splice junctions may require

extra evidence (higher anchor complexity/expression and relative expression) if

they do not readily fit the reference gene model, e.g., junctions connected to an

intronic sequence and long-range junctions.
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After filtering, 184,663 (13.7%) splice junctions have been kept for the construction

of the transcriptome. Within the junctions kept, 161,896 (87.8%) are in junction

annotation, demonstrating the effectiveness of the filtering process.

6.2.3 Identification of exon boundary

However, it is difficult to specify the expression cutoff without knowledge of the read

coverage of the mixed exons.

Through wavelet transformation, we have been able to distinguish the exonic

signal from the noise signal automatically. Every mixed region is first identified by

recognizing an exon connected by splice junctions of different strands, which indicates

that two oppositely stranded genes are falsely joined by noise. The read coverage of

the mixed region is extracted. A one-layer wavelet decomposition is performed on the

read coverage signal, leading to a high frequency component (the detail component)

that magnifies the difference between coverage on exonic nucleotides and that from

noise. Such difference can be captured by calculating the variance ratio at a cutting

base pt,

V R(pt) =
V ar(coverage[0, pt])

V ar(coverage[pt+ 1, n])
. (6.3)

The exon boundaries of the mixed region are then determined by finding the two

bases with the highest variance ratio.

The time complexity of this procedure is linear to the number of bases in the

region, i.e., the length of the signal. In the BRCA dataset, we have successfully

processed 1,707 mixed regions.
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Figure 6.2: The recognition and removal of read coverage noise through wavelet
decomposition. (a) The read coverage of gene SOD1 and SCAF4 of a BRCA sample.
The tracks labeled splice graph and alternative splicing paths show the splice graph
reconstructed by DiffSplice. (b) The read coverage in the region that connects the
two adjacent exons of SOD1 and SCAF4. The read coverage outside the exons is high
(> 20), making it difficult to recognize the boundaries of the exons. (c) The wavelet
decomposition of the read coverage signal. The variance of the detail component
distinguishes the exonic regions from the background.
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6.2.4 Weight of the splice graph

The splice graph depicts the possible ways the exonic sequences of a gene can get

transcribed. Every graph path representing a transcript, the start/end vertex indi-

cates the transcription start/termination site, and the graph edges through which

vertices in the path are traversed identify the exon composition of the transcript.

Further, the expression of the transcript is reflected by the number of reads sam-

pled on each exon. The expression information is represented by the weights in the

splice graph. In particular, the vertex weight represents the averaged read coverage

on an exon, whereas the edge weight represents the number of spanning reads of a

splice junction.

Because the number of reads sampled in each sample may be different, the expres-

sion in each sample needs to be normalized. We normalize the samples by the total

number of reads in each sample, which is an estimate for the library size. For datasets

with less heterogeneity, normalization techniques such as upper-quartile normaliza-

tion [Bullard et al., 2010] and median normalization may also be applied, under the

assumption that the genes in the specific quartiles have the same median expression

level in different samples.

6.2.5 Transcription analysis on the unified splice graph

The preprocessing together with the splice junction filter and the exon boundary

detector allow fast and accurate reconstruction of a unified splice graph that repre-

sents all samples. The transcription analysis is then performed on this graph using
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algorithms discussed in previous chapters. Specifically, the genome-wide ESG is first

decomposed into a hierarchy of ASMs, which capture all alternative splicing events

in the data. Every sample then shares the same transcription model summarized by

the graph, but with different weights determined by the sample-specific expression.

The expression of each alternative splicing isoform is then estimated and will be used

as the basis of downstream differential analysis.

6.3 Cluster analysis of transcription in alternative splicing

Traditionally, differential transcription analyses are defined as the comparison of tran-

scriptome between two conditions, e.g., a group of samples from diseased individuals

versus a control group of samples from normal individuals, or that among multiple

classes, e.g., samples from different tissues of a human body or samples from different

subtype groups of breast cancer patients. The basic assumption of these traditional

group-wise analyses is the homogeneity of the samples pre-specified in each condition

group, that is, all samples in a class should follow some “population distribution”.

These population distributions are often described by single-mode probability den-

sity functions with population-wise parameters. For example, in the context of gene

expression, the expression level of a gene in samples of a condition may be modeled

as a log-normal distribution with a population mean and a population variance. For

any sample in this condition, the scaled expression level of this gene after taking

the logarithm is expected to center closely around the logarithm mean. However in

large-scale clinical data, samples pre-grouped may have prominent variations which

will make the assumption of a population distribution questioned. To calculate the
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difference between two sample groups and to evaluate the statistical significance may

become problematic because of the biases on the mean and variance. Furthermore, if

the samples in a group exhibit more than one pattern, the consistency in transcrip-

tion of these samples may be neutralized and overlooked if all samples in the group

are forced to be treated as the same.

Therefore, an approach not depending on presumed grouping will be highly valu-

able for complex large-scale clinical data. As a unsupervised approach, cluster anal-

yses may serve as a reasonable solution for these datasets.

6.3.1 Related work

Application of clustering techniques is not new in the detection of expression patterns

of genes across samples or datasets. Nonetheless previous work has mostly focused

on inference in the co-regulation of expression at the gene level.

Co-expression network inference: Genes are molecular units in living or-

ganisms which carry the important biological information encoding proteins. The

interaction among the genes are complicated, some of which may regulate the be-

havior of the others. To understand the regulatory interaction mechanisms, a gene

network is usually adopted to represent the relationship among the genes. Each node

corresponds to a gene of interest and each node is associated with an expression vec-

tor denoting its expression under an order list of conditions. The goal is to infer the

regulation through the clustering of the gene expression data over a range of con-

ditions on this gene network. The “distance” between a pair of genes is measured

between the expression vectors of these genes using certain metric. Afterwards, clus-
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tering methods may be applied on the weighted gene networks to find tight clusters,

each representing a set of genes co-expressed under the list of conditions. A plenty of

work has been published using co-expression network to inference the co-regulation

on gene level. For example, Zhang et al. [2012] implemented weighted network mining

algorithm called quasi-clique merger and used microarray gene expression datasets

from multiple types of cancer to identify the gene co-expression clusters with enriched

functions.

bi-clustering: Another strategy to cluster the gene expression values in multiple

samples is bi-clustering, a data mining technique which allows simultaneous clustering

of the rows and columns of a matrix. Given a set of genes, each with a vector of

values representing its expression under a list of conditions (samples), a matrix can be

constructed to represent the expression data. Each gene corresponds to one row and

each condition to one column. The ij-th entry in the matrix represents the expression

level of the i-th gene under the j-th condition. Finding co-expression genes using bi-

clustering methods is equivalent to discovering homogenous patterns (blocks) on the

matrix. Specific algorithms have been developed to seek for bi-clusters with particular

properties, such as bi-clusters with constant values, bi-clusters with constant values on

rows (genes) or columns (conditions), bi-clusters with coherent values and bi-clusters

with coherent evolutions, to name the major categories [Madeira and Oliveira, 2004].

co-splicing clustering: With the rapid development of RNA-seq technology,

one can go beyond the gene-level analysis to alternative splicing events investigation.

Alternative splicing allows for a single gene to code for multiple proteins which greatly

enriches the protein diversities. For example, in human, about 20,000 protein-coding
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genes encode over 75,000 isoforms resulting from alternative splicing events. Also ab-

normal variations in splicing may be associated with diseases like cancer. Therefore,

instead of gene-level co-regulation analysis, it is more interesting to look at the splic-

ing variants and see their behaviors across conditions. One work published recently

turned their focus into identifying co-splicing clusters on a set of cassette exons across

multiple samples [Dai et al., 2012]. They assume that the co-expressed cassette exons

are regulated by the same splicing factors. In this paper, the authors first collected

all the cassette exons from the annotation database, then built a 3-layer network to

represent the relationship among all the features. The first two layers summarize

the relationship between any two features under one condition and the third layer

represents different conditions. By finding homogeneous patters across the 3rd layer,

this method could get a set of co-expressed cassette exons.

The existing techniques are limited in the scope of classical mining on distance

matrices, for the identification of sub-matrices sharing similar values or baring pre-

defined patterns. Every gene in every sample is represented by a feature of a single

real value, like the expression level or the skipping ratio. However, in transcription-

level clustering it is difficult to find a representative real value for the profiling of

transcription, because different genes have different sets and numbers of transcripts.

Hence it is hard to define a consistent measurement for the direction and magnitude of

change in transcription that may be compared across genes and samples. Therefore,

the following content in this chapter aims to propose a new generalized cluster scheme

for transcription-level clustering.
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6.3.2 Features for clustering

The cluster analysis is performed after the DiffSplice pipeline, on one ASMs at a

time. Derived from the unified splice graph that contains splicing variants present

in all samples, an ASM has the same set of alternative transcription paths in every

sample, but with different expression profiles. In the group-wise statistical tests for

differential transcription, the proportions of the alternative paths in the ASM are

extracted and the divergence is calculated among the distributions of abundance on

the paths in the two groups’ samples. Taking the proportions will free the information

of the absolute expression levels, which will be examined separately by the tests for

different gene expression. Consistent changes in the percentage composition of the

splicing isoform will be selected by the tests, even the expression level of the ASM

varies in the samples. In the clustering analysis, samples shall be grouped for an

ASM if they exhibit consistent transcription profile in the alternative splicing, both

in splicing isoforms’ composition and their expression level. Therefore, we will use

the absolute expression level of the alternative transcription paths in an ASM as the

features for clustering.

Consider an ASM A with l alternative transcription paths p1, p2, · · · , pl. Let

Cs(pi) denote the expression level of path pi in sample s, measured by the read

coverage. The expression feature is then defined as the logarithm-normalized value,

logCs(pi). The feature vector of a sample s in ASM A is then the l-dimensional real

vector fA(s) = [Cs(p1), Cs(p2), · · · , Cs(pl)]
T . In practice, a small value is added to

the expression level in order to prevent taking logarithm on a 0 value, such as 10−3.
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6.3.3 Hierarchical clustering with Mahalanobis Distance

For agglomerative clustering, at each level, we need to decide which pairs of clusters

should be merged. Therefore, a similarity metric is required for computing distances

between any two clusters. We adopt the Mahalanobis distance in order to take the

variance of the data points within the cluster into consideration.

Given two random vectors ~x = [x1, x2, · · · , xn]
T and ~y = [x1, x2, · · · , xn]

T , the

mean of ~x is µ =
∑n

i=1 xi and covariance matrix of ~x is: S = 1
n−1

∑n

i=1(xi−µ)(xi−µ)
T .

The Mahalanobis distance between ~x and ~y is defined as:

d(~x, ~y) =
√

(~y − µ)TS−1(~y − µ). (6.4)

We then use the agglomerative clustering, a bottom-up scheme, to gradually ag-

gregate all samples into clusters, with the average distance criterion. Because the

Mahalanobis distance can be viewed as the distance between cluster means normal-

ized by the covariance, we separate two clusters if their distance is > 3, instead of

specifying the maximum number of cluster prior to the analysis. The cutoff 3 is moti-

vated by the 3σ rule for the Gaussian distribution, i.e., about 99.7% of values drawn

from a Gaussian distribution are within 3 standard deviations from the mean.

6.3.4 Information score

The derived clusters are of different sizes and have various compositions of samples

from each subtype group. In Figure 6.3 we show two clusters that may encode

different degrees of information. The middle panel of Figure 6.3 shows a cluster C1

consisting of 568 samples. The percentage of samples coming from each subtype
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group is ρ(C1) = [ 93
568

, 46
568

, 280
568

, 136
568

, 13
568

]T = [0.16, 0.08, 0.49, 0.24, 0.02]T , very similar

to the subtype distribution of the entire data ρ(data) = 123
728

, 60
728

, 359
728

, 170
728

, 16
728

]T =

[0.17, 0.08, 0.49, 0.23, 0.02]T which is shown on the left panel. Then the evidence is

weak for arguing the non-randomness of composing the cluster, indicating that the

differential transcription exhibited by the clustered samples on the corresponding

ASM may be not informative for classifying the subtypes. On the other hand, the

cluster C2 shown on the right panel has a subtype distribution highly divergent to

that of the entire data, ρ(C2) = [46
57
, 9
57
, 1
57
, 0
57
, 1
57
]T = [0.81, 0.16, 0.02, 0, 0.02]T . This

prominent divergence between ρ(C2) and ρ(data) strongly evidences against a random

grouping, suggesting a unique pattern that distinguishes the samples in this cluster

from the rest. Hence the pattern revealed by this group of sample may provide

high value for the subtype classification based on the differential transcription of the

corresponding ASM.

In order to measure the divergence between the subtype distribution of a cluster

and that of the entire data, we define the information score of a cluster as below.

Let m1, m2, · · · , mk denote the number of samples in the k groups, and let m =

∑k

i=1m
i denote the size of the dataset. The original subtype composition of the

dataset is

ρ(data) = [q1, q2, · · · , qk]T = [
m1

m
,
m2

m
, · · · ,

mk

m
]T . (6.5)

For a cluster Ci, let n1
i , n

2
i , · · · , n

k
i denote the number of cluster members from

each subtype group, and let ni =
∑k

j=1 n
j
i denote the size of the cluster. Then the
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Figure 6.3: Examples of subtype distribution of a cluster. Left: subtype distribution
of all samples in the data set. Middle: subtype distribution of a less informative
cluster, a distribution with similar shape as the overall subtype distribution of the
entire data set. Right: subtype distribution of a highly informative cluster — most
samples that constitute this cluster come from Basal and Her2 hence the differen-
tial transcription captured in this alternative splicing module may reveal important
information in classifying Basal and Her2 samples from the rest subtypes.

observed subtype distribution of Ci is

ρ(Ci) = [p1i , p
2
i , · · · , p

k
i ]

T = [
n1
i

ni

,
n2
i

ni

, · · · ,
nk
i

ni

]T . (6.6)

The original subtype composition of the entire dataset ρ(data) is the maximum

likelihood estimator for the null model, the cluster being drawn randomly from the

population. The observed subtype distribution is the maximum likelihood estimator

for the alternative model, the cluster being drawn from a distribution different from

the composition of the population. The information score then compare the two
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models by taking the log likelihood ratio,

IS(Ci) = log
L(Alternative model)

Null model
(6.7)

= log

∏k
j=1(p

j
i )

n
j
i

∏k

j=1(q
j)n

j
i

(6.8)

=
k

∑

j=1

nj
i · (log p

j
i − log qj). (6.9)

Unlike a metric directly operated on the distribution vector, such as the Euclidean

distance and the Jensen-Shannon divergence, the information score we have defined

also takes into account the size of the cluster.

Larger information score reflects heavier deviation of the observed subtype distri-

bution from the underlying subtype distribution and may help pick highly informative

clusters.

6.4 Transcriptome analysis on TCGA breast cancer dataset

6.4.1 Differential transcription of breast cancer subtype groups

A total of 184,663 splice junctions have been detected by the RNA-seq reads of all

BRCA samples, amongst which 161,896 (87.7%) are in existing transcriptome anno-

tation. These splice junctions, together with the exonic segments reconstructed, have

constituted a total of 6,745 ASMs, 4,237 (62.8%) of which contain novel junctions.

The most common category of the ASMs observed in BRCA samples is alternative

transcription start/termination, which 3,134 (46.5%) of all ASMs belong to. A large

amount of ASMs (2,001 or 29.7%) have exhibited as combinations of two or more

ASMs of different categories. The distribution of the basic ASM categories has been
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summarized in Table 6.1.

We first tested all ASMs for consistent groupwise differential splicing, i.e., for

every ASM we tested the null hypothesis that the splicing isoforms of the ASM

have the same proportion in all subtype groups. Under false discovery rate (FDR)

≤ 0.01 and minimum pairwise square root of JSD ≥ 0.1, we have identified a total

of 1,206 ASMs, amongst which 847 (70.2%) contain novel splice junctions. Some

genes many have multiple ASMs with significant differences. The 1,206 significantly

differentiated ASMs have come from 1,118 genes. The distribution of categories of

the significantly differentiated ASMs is similar as that of all ASMs, indicating that

the category of ASM and the number of splicing isoforms have not caused obvious

bias in the evaluation of statistical difference (Table 6.2).

Table 6.3 summarizes the number of significantly different ASMs between any

pair of subtype groups. The normal-like samples exhibited the largest heterogeneity

with samples in the other subtypes. Over 500 ASMs were identified as significantly

different between normal-like subtype and any other subtype. The basal group has

shown a large amount of different ASMs from HER2 and LumB, and LumA samples

have shown similarity as LumB samples.

6.4.2 Cluster analysis of transcription profiles of alternative splicing events

The cluster analysis has been conducted on 1740 ASMs tested to exhibit differential

transcription in the 728 tumor samples of TCGA dataset. A total of 143 clusters have

been selected as potentially informative transcription patterns whose information

scores are > 20 and whose sizes are ≥ 10. These clusters come from 119 ASMs of 69
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Figure 6.4: A novel alternative splicing event which is also differentially spliced in
different subtypes within gene CYFIP1 in TCGA dataset. (a) The read coverage of
gene CYFIP1. Three ASMs asm6 − 8 have been identified in this gene. (b) The
ASM asm7 shows the mutual exclusive exons in this gene. The 3rd and 4th exons
are contained in alternative transcription paths p1 and p2, respectively, but they are
not included in the same path. The splice junctions and exon in p1 is novel to the
reference transcripts. The path p1 has similar expression as p2 in LumA and LumB
samples, but has very low expression in normal-like samples.
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genes, including 57 clusters from regions not in the current gene annotation.

In Figure 6.5 we show the expression of gene EVL in 6 randomly selected samples

(2 LumA, 1 LumB, 2 Basal, 1 Her2) of TCGA breast cancer dataset. According

to the overall gene read coverage, the LumA and LumB samples (tracks in blue)

have higher expression level of this gene than the Basal and Her2 samples (tracks

in orange). However the variance of the expression level may be prominent even for

samples classified as the same subtype. For example, the two samples in LumA has

read coverage of 2000 and 300 respectively. Besides the change of gene expression,

the transcription of EVL differs among the samples in the first ASM of the gene,

chr14.asm521, whose 4 alternative transcription paths reveal 4 different sets of exons

the transcripts in EVL may start with. The alternative splicing event captured in

this ASM is recognized as an event of alternative transcription start sites. The splice

junction in path p1 is novel connecting the 2nd and the 4th exon, as compared to the

transcript annotations. The 2nd exon, the alternative transcription start site identi-

fied by p1 and p3, is mainly expressed in LumA and LumB samples (colored blue),

but tends to have very low expression in Basal and Her2 groups (colored orange).

Figure 6.6a plots the distribution of transcription profiles of all tumor samples on

this gene, coordinated by the log read coverage of transcription paths p2, p3 and p4 in

each sample. The colors distinguish samples from different subtype. Consistent with

the samples selected for the coverage plot, most LumA and LumB samples tend to

have larger expression of p3 as compared to other subtypes.

Table 6.4 shows the 6 clusters resulting from the clustering of transcription profiles

on this gene. The clusters 1 is highly informative with an information score of 74.22.
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Table 6.1: The distribution of ASM categories in BRCA dataset. ES: exon-skipping;
ME: mutual exclusive; IR: intron retention; ASS: alternative splice sites; ATS/ATT:
alternative transcription start/termination; Mixed: a combination of two or more
ASM categories.

ASM Category ES ME IR ASS ATS/ATT Mixed
Number of ASMs 831 413 102 264 3134 2001

Table 6.2: The distribution of ASM categories in BRCA dataset, for the ASMs with
significant differences in transcription. ES: exon-skipping; ME: mutual exclusive; IR:
intron retention; ASS: alternative splice sites; ATS/ATT: alternative transcription
start/termination; Mixed: a combination of two or more ASM categories.

ASM Category ES ME IR ASS ATS/ATT Mixed
Number of ASMs 113 10 5 28 568 482

Table 6.3: The distribution of the number of significantly different ASMs between
two subtypes.

HER2 LumA LumB Normal-like
Basal 540 173 543 850
HER2 355 305 758
LumA 97 543
LumB 821

Table 6.4: Clustering of samples on transcription of EVL in TCGA dataset. The
clustering of samples on the transcription of the alternative transcription start sites
in gene EVL shows 6 clusters. The clusters 1, 2 and 4 are considered to have higher
information score. The cluster 1, in particular, consists of mostly Basal samples.

Cluster Score Size Basal Her2 LumA LumB Normal
1-blue 74.22 57 46(81%) 9(16%) 1(2%) 0(0%) 1(2%)
2-cyan 17.48 23 10(43%) 8(35%) 1(4%) 3(13%) 1(4%)
3-purple 2.91 2 0(0%) 0(0%) 0(0%) 2(100%) 0(0%)
4-red 14.88 601 61(10%) 38(6%) 340(57%) 152(25%) 10(2%)
5-green 2.71 40 5(13%) 5(13%) 16(40%) 11(28%) 3(7%)
6-black 2.55 5 1(20%) 0(0%) 1(20%) 2(40%) 1(20%)
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Figure 6.5: Expression of gene EVL in TCGA dataset. The ASM chr14.asm521 shows
the alternative transcription start sites in this gene. Four alternative transcription
paths p1 − p4 correspond to transcripts starting with 4 different sets of exons in the
gene. The splice junction in p1 is novel to the reference transcripts.
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Figure 6.6: The 3-D scatter plot of samples in the transcription of gene EVL in TCGA
dataset. (a) The scatter plot color coded by subtypes: red-Basal, purple-Her2, blue-
LumA, cyan-LumB, green-Normal. (b) The scatter plot color coded by clusters. The
three dimensions correspond to the read coverage of transcription paths p2, p3 and
p4, in logarithm scale.
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This cluster consists of 57 samples, 81% of which come from Basal group. The samples

in this cluster all have very low (read coverage ¡1) expression on p3, as shown in the

blue points of Figure 6.6b.

Copyright c© Yin Hu, 2013.
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Chapter 7 Other related work in RNA-seq-based transcriptome analyses

Although the application of next-generation sequencing or high-throughput sequenc-

ing technologies on transcriptome analysis has not been long, just since year 2008 [Mar-

guerat et al., 2008, Wang et al., 2009], there have been abundant research work that

utilizes the deep sequencing coverage on a transcriptome of interest for insights into

the linkage from genotype to phenotype of various species.

This chapter summarize the typical workflows of RNA-seq analysis and some of

the central challenges that the computational methodologies are developed to address

(Figure 7.1). The diagram in Figure 7.2 further summarizes the data flows for the

analyzing pipelines, from RNA-seq reads to each computational problem.

7.1 Reference-guided gene level expression analysis

A gene is the basic unit of the hereditary information stored in a cell’s DNA and is

passed from parents to the offsprings. It is considered that the change of expression

level of a gene may result in the change of density of functional products encoded

by the gene, such as the RNA or protein. The altered RNA density and protein

expression may further affect the function of the cell. Therefore, the detection of

differential gene expression constitutes an essential tool for the understanding of cell

differentiation and disease.

In microarrays, the gene expression level is read as a continuous value, and statis-

tical tests may be formed to evaluate the equivalence between the expression levels

152



www.manaraa.com

RNA-seq short reads

de novo assembly ab initio reconstruction

overlapped sequence (k-mer)

de Bruijin graph

contig 1 contig 2 contig 3

assembled transcripts

reference genome

reconstructed transcripts

exon 1 exon 2 exon 3

RNA-seq read alignment on genome

exon 1 exon 2 exon 3

T1

T2

T1

T2

a

b

exon 1 exon 2 exon 3

e
sample A

sample B

T1

T2

d
e

n
s
it
y

expression level

T1

T2

d
e

n
s
it
y

expression level

p
ro

p
o

rt
io

n

sample A sample B

difference of 

transcript profile

T1

T2
T2

f

g

fusion transcript

pre-mRNA from gene 1 pre-mRNA from gene 2

fusion spanning read

discordant mate-pair

gene 2

gene 1

RNA-seq fusion read alignment

fusion junction

normal junction

d

break point

gene G

gene G

spliced alignment

posterior distribution of 

transcript abundance

posterior distribution of 

transcript abundance

splice graph

reference genome

unspliced alignmentspliced alignment

3 smaller segmentsread sequencec

Figure 7.1: Typical workflows and computational challenges in transcriptome studies
using RNA-seq.(a) The RNA-seq short reads. (b) De novo transcriptome assem-
bly. (c) RNA-seq short read alignment to the reference genome. (d) Ab initio
transcriptome reconstruction. (e) Transcript abundance estimation. (f) Differential
transcription analysis. (g) Gene fusion detection.
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of a gene in different conditions. Fold change, the ratio of the expression level in one

condition against that in another condition, is often calculated to measure the prac-

tical magnitude of the difference. The RNA-seq-based differential gene expression

analysis extends from that for the microarray data, except for that the expression

measurement is now discrete as the read count. With a reference genome or tran-

scriptome, the RNA-seq reads may be mapped to reference by matching the (short)

sequences of the reads to the (long) sequence of the reference. The number of RNA-

seq reads falling into each gene is counted. These counts are treated as the observed

expression on the genes and are then modeled by a probability distribution, typically

the negative binomial distribution. Finally, gene expression in multiple samples is

jointly considered in the model to estimate the mean expression and the variance,

allowing statistical tests for the equality of gene expression between sample groups.

Biologically, this analysis does not explore the transcriptome expression and may

not directly point to protein isoforms. Moreover, the count-based expression measure-

ment without considering the transcripts may be biased, because the transcripts in

the gene typically have different lengths. Computationally, the mapping of the read

sequences to the reference sequences is not trivial. Many reads are sampled at the

boundaries of two exons in the mRNA transcripts. These reads cannot be mapped to

the reference genome as a entirety. Even when mapping to a reference transcriptome,

perfect match may not exist due to individual modifications such as SNPs, insertions

and deletions.
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7.2 Mapping RNA-seq reads to a reference genome

For species with a reference genome available and well annotated, like the human,

it is often preferred to map the RNA-seq short reads to the reference genome first.

This procedure tries to find matches on the reference genome for the sequences of

the sampled short reads. Importantly, gaps are allowed in the read alignments for

up to 50,000bp typically. A read whose sequence can directly match a piece of the

reference genome is mapped as an entirety and has an unspliced alignment. A read

whose sequence should be split into segments and matched to different places of the

reference genome separately has an spliced alignment. The spliced RNA-seq read

alignments then suggest the splice junctions and introns on the genome, including

those not known in existing annotation database.

The challenge for this spliced read mapping is the numerous possible splice posi-

tions in a read sequence and possible locations to to map on the reference genome.

For example, consider only the case in which one gap is allowed in a read alignment,

and a 100bp read will have 99 possible splice positions in theory. Each segment will

then be compared to the > 3 × 109 nucleotides of the reference genome for possible

matches. Furthermore, because the genome sequence consists of only 4 characters,

a segment too short may have too many matches (also called hits) on the genome.

The computational burden may be further increased by repetitive sequences on the

genome and mismatches due to individual insertions/deletions to the reference as well

as sequencing errors.

One commonly used approach is to divide a read sequence into several smaller
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segments, or k-mers. The length of the segments, k, is usually set to be ≥ 8, in order

to keep the complexity of the segment sequence and to reduce the number of possible

hits on the reference genome. Sequence matching on the reference genome is tried

for every segment. A segment that cannot be mapped is then expected to contain

a splice point. It will be split to locate the potential splice junction, by searching

regions surrounding the mapped positions of the segments next to the unmapped

segment.

The read mapping approaches can be divided into two categories, the unspliced

aligners and the spliced aligners [Garber et al., 2011]. The unspliced aligners are

typically used to align reads to a reference transcriptome, including MAQ [Li et al.,

2008a], SHRiMP [Rumble et al., 2009], ELAND [Cox, 2007], Novoalign [Hercus],

Stampy [Lunter and Goodson, 2011], Bowtie [Langmead et al., 2009], BWA [Li and

Durbin, 2009], Bowtie 2 [Langmead and Salzberg, 2012] and SNAP [Zaharia et al.,

2011]. Reads are mapped to the reference as an entirety, possibly allowing several

bases of mismatch. For example, SHRiMP [Rumble et al., 2009] and Stampy [Lunter

and Goodson, 2011] take the seed-extension strategy. They first find matches in

the reference for short subsequences of the reads, then apply on candidate regions

around each seed more sensitive algorithms such as the Smith-Waterman algorithm

or statistical models and lastly extend the seeds to full alignments. Alternatively,

Bowtie [Langmead et al., 2009] and BWA [Li and Durbin, 2009] use the Burrows-

Wheeler transformation to compress the reference genome and provide higher effi-

ciency.

However, unspliced aligners can only be used to map the RNA-seq reads onto
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known exons and known transcripts. Novel splices and novel transcript isoforms will

then be missed. Therefore, the spliced aligners are often favored for transcriptome

analyses, including QPALMA [Bona et al., 2008], TopHat [Trapnell et al., 2009b],

SpliceMap [Au et al., 2010], MapSplice [Wang et al., 2010a], GSNAP [Wu and Nacu,

2010] and STAR [Dobin et al., 2013]. For example, utilizing a training set of positive

controls, QPALMA [Bona et al., 2008] developed a machine learning algorithm to

help predict splice junctions. Representing the exon-first approaches, TopHat [Trap-

nell et al., 2009b] first maps full, unspliced reads to the reference genome and re-

constructs candidate exons. Unmapped reads are then divided into smaller segments

and mapped to candidate splice junctions constructed from pairing candidate exons.

SpliceMap [Au et al., 2010] uses the bases flanking the splice site to help locate po-

tential splice sites. MapSplice [Wang et al., 2010a] divides reads into short segments

(k-mers) and maps the segments to the reference genome using unspliced aligners like

Bowtie. Splice sites will then be searched around mapped segments if their adjacent

segments cannot be mapped. In principal, these approaches may find spliced read

alignments separated by gaps from several base pairs up to hundreds of thousands

of base pairs, or even read alignments spanning two chromosomes (such as the fu-

sion reads detected by MapSplice). These spliced aligners then give great flexibility

to transcriptome analyses by picturing the genome-wide splice graph purely follow-

ing the data, allowing the study of subject-specific splices not cataloged by existing

database or even fusion transcripts. In practice these procedures may be confounded

by short read length, insertions/deletions, repetitive sequences, pseudogenes and se-

quencing errors.
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7.3 Gene fusion discovery

In addition to normal transcriptome analyses as described above, gene fusion detec-

tion is another central application of RNA-seq, extremely useful for cancer transcrip-

tome analyses. Along with alternative splicing, fusion transcripts in cancer cells may

serve as prominent biomarkers that benefit tumor diagnosis, prognosis and treatment.

Gene fusion is the phenomenon that sequences of two separate genes are merged

together into a hybrid gene, leading to disfunction RNAs but sometimes proteins with

abnormal functions that may result in diseases like cancer. This may be caused by

structural abberations such as chromosome translocation, the switch and rearrange-

ment of parts between two chromosomes, deletion, the loss of a part of a chromosome,

or chromosomal inversion, a part of a chromosome being reversed end to end.

In Figure 7.1f, for example, the left two exons of gene 1 (green) and the rightmost

exon of gene 2 (pink) are concatenated into a fusion transcript that contains sequence

from both genes. When sequencing the transcriptome, RNA-seq reads will cover the

fusion break point if they span the green exon and the pink exon simultaneously.

These reads are called the fusion spanning reads (blue reads). If paired-end sequencing

protocols are applied, read pairs sequenced from transcript fragments that contain

the fusion break point may have one end from gene 1 and the other end from gene 2.

These reads are called the discordant mate-pairs (orange read pairs).

When mapping the RNA-seq reads to the reference genome, the fusion spanning

reads should have no normal alignments, alignment either in an entirety or with proper

segments separated by gaps of a reasonable length (in the region of a gene). Instead,
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these reads should be mapped as segments separated by extraordinarily long gaps

or on discordant strands or even on different chromosomes. The locations where the

fusion spanning reads are split indicate the fusion junctions. In addition, discordant

mate-pairs may have their end reads mapped around a fusion junction, one on each

side. These discordant mate-pairs also suggest the existence of the fusion junction

connecting the two genes.

In practice, the limited read length often results in a large set of fusion junction

candidates (hundreds or thousands). Many false fusion alignments may be introduced

due to repetitive sequences on the genome and mismatches in the read sequences.

Because most fusion transcripts are not highly abundance, the classification of real

fusion transcripts is difficult and often has a low specificity.

Related to the RNA-seq read mapping, there are also a handful of methods for

the discovery of gene fusion. In cancer, alternative splicing and gene fusion events

are commonly found in the mRNA transcriptome [Maher et al., 2009, Berger et al.,

2010]. Gene fusion events were initially found in non-epithelial cancers, such as

leukemia and lymphomas. Recent research using RNA-seq data also demonstrated

gene fusion events in common epithelial cancers accounting for 90% of cancer related

deaths [Maher et al., 2009]. Therefore, cancer specific splicing and fusion events are

promising biomarkers and targets for diagnostic, prognostic and treatment purposes.

Traditionally, paired-end reads have been applied to detect structural variations in

DNA [Medvedev and Brudno, 2008, Lee et al., 2008, Medvedev et al., 2009, Hormoz-

diari et al., 2009, Maher et al., 2009]. The end reads are individually mapped and the

pairing information is used to infer the regions where breakpoint may locate. The
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candidate regions of breakpoints then suggest potential genes that fuse together, but

the actual sequences of fused transcripts remain unknown.

Using RNA-seq reads, especially reads of 75bp or longer, the precise identification

of actual fusion sites becomes possible. For example, extensions to spliced aligner for

normal splices, such as MapSplice [Wang et al., 2010a] and TopHat-Fusion [Kim and

Salzberg, 2011], have been developed to discover fusion junctions, abnormal splice

junctions that have extraordinarily long intron size (e.g. ¿50,000) or that have splice

sites on discordant strands or that have splice sites on different chromosomes. Similar

approaches taking this mapping-based strategy include SplitSeek [Ameur et al., 2010],

ShortFuse [Kinsella et al., 2011] and FusionSeq [Sboner et al., 2010]. Another strategy,

represented by Trans-ABySS [Robertson et al., 2010], relies on the de novo assembly

of transcripts and then map the assembled transcripts for discordantly mapped ones

across fusion points. Other computational approaches for the discovery of gene fusion

events and structural variations include SnowShoes-FTD [Asmann et al., 2011], Fu-

sionMap [Ge et al., 2011], FusionHunter [Li et al., 2011b], Comrad [McPherson et al.,

2011b], deFuse [McPherson et al., 2011a], nFuse [McPherson et al., 2012], ChimeraS-

can [Iyer et al., 2011] and Dissect [Yorukoglu et al., 2012]. The performance of these

methods very much depends on the software implementation and parameter setting,

and different approaches may have significant disagreement even when applied on the

same dataset.
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Figure 7.2: The primary computational problems and typical workflows in transcrip-
tome studies using RNA-seq technologies. The blue arrows show the data flows. The
purple arrows point to processes that require a reference genome and the green for
requiring a reference transcriptome. The dashed arrow indicates that the reference
is not necessarily required by all methods. Some issues are omitted in the chart but
have the same importance, such as the normalization across samples before differen-
tial analyses and the correction of sampling biases.
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7.4 Reference-free De novo genome/transcriptome assembly

Besides the enormous amount of reads that may be collected to suggest the gene

expression levels, the greatest power of RNA-seq technologies is their ability to dis-

cover novel transcripts, transcripts that have not been cataloged in existing knowledge

databases. The de novo transcriptome assembly problem has emerged as the assem-

bly of transcripts in the original sample solely based on the sequences of the short

reads.

Because the transcriptome is deeply sampled, it is expected that most bases of a

moderately abundant transcript are sampled and sequenced by multiple reads. Reads

are typically divided into smaller seeds (k-mers, where k denotes the length of the

seed) for more efficient identification of overlaps. Two reads may be considers as

coming from a same transcript if their sequences share significant overlaps, e.g., a

k-mer. The read sequences may then be summarized using a compact representation

called the de Bruijin graph. Seeds are gradually extended into contigs, and reads

overlap with multiple contigs suggest the splice connection between contigs. The de

Bruijin graphs may then be traversed to assemble contigs into transcript sequences.

(Figure 7.1b)

Due to the limited read length and hence small k-mers, the difficulty of the as-

sembly mainly lies in the numerous possibilities of overlapped read sequences. Small

sequence modifications such as SNPs and insertions/deletions, together with sequenc-

ing errors, will further confound the assembly by introducing extra paths to the de

Bruijin graph. As a result, the generated de Bruijin graph often has a size and
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complexity infeasible for transcript assemble. The length and the occurrence of the

overlaps are then common criteria to filter the graph, at a risk of overlooking tran-

scripts with relatively low expression. In practice, de novo assemblers often require

considerable computational power and resources (tens or even hundreds of RAM,

running for days or weeks), and may not provide satisfying sensitivity and specificity

of the assembled transcript set.

In order to enable the short-read sequencing on transcripts at random positions,

the mRNA molecules will be randomly fragmented into pieces before library prepa-

ration. Transcript fragments of proper size (typically 200bp to 500bp, depending on

the desired insert size) will be selected as the cDNA library and sequenced at one end

or both ends if sampled. Thus the observed RNA-seq reads are only local pieces of

the original transcripts. A group of de novo assembly approaches have been proposed

for the reconstruction of the mRNA transcriptome on the basis of only the sequenced

reads.

Short-read assemblers were first developed for the assembly of genomes, including

Velvet [Zerbino and Birney, 2008], ALLPATHS [Butler et al., 2008] and ABySS [Simp-

son et al., 2009]. For example, Velvet [Zerbino and Birney, 2008] uses the de Bruijn

graphs to represent the overlapped short sequences (captured by k-nucleotides or

k-mers) among the short reads (25-50bp) in the sample, removes errors such as erro-

neous cycles and connections in the graph, then produces high quality unique contigs.

This algorithm set may further use paired-end read and long read information to help

resolve repeats and scaffold contigs in large complex genomes [Zerbino et al., 2009].

Direct application of these de novo genome assembly approaches on transcriptome

163



www.manaraa.com

assembly is not favorable. In RNA-seq, the dynamic range of measured transcription

expression can be very large, and a small portion of highly abundant transcripts may

dominate the majority of the sampled reads [Wang et al., 2009]. The large variation

in local read densities may cause problems to parameter setting in filters of noises

and repetitive regions, which may lead to falsely throwing transcripts with very high

abundance or very low abundance. The assembly of transcriptome is further com-

plicated by the large amount of shared sequences among transcripts from the same

gene. In addition, many RNA-seq protocols are strand-specific, allowing the iden-

tification of the transcription direction from the reads. For protocols that are not

strand-specific, the strand of transcription may also be inferred by the dinucleotide

sequences in the intron flanking the donor and acceptor sites. Then the strand in-

formation should also be taken into account for transcript assembly to enable the

knowledge of the actual mRNA sequence and to help separate genes with overlapped

exonic sequences. [Martin and Wang, 2011]

Most de novo transcriptome assemblers still adopt the compact representation

of the de Bruijn graph. One strategy is to assemble the reads multiple times us-

ing an algorithm such as Velvet, ALLPATHS and ABySS with varying stringencies.

This will allow the discovery of transcripts with a broad range of expression levels.

The final set of transcripts in the sample will then be curated by merging tran-

scripts resulting from individual runs and removing redundancy. Approaches taking

this strategy include Rnnotator [Martin et al., 2010], Multiple-k [Surget-Groba and

Montoya-Burgos, 2010] and Trans-ABySS [Robertson et al., 2010]. Other assemblers,

such as Trinity [Grabherr et al., 2011] and Oases [Schulz et al., 2012], directly assem-
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ble transcripts by traversing the de Bruijn graphs. For example, Trinity first uses a

greedy path-searching algorithm in the k-mer graph to recover a collection of linear

contigs that best represent the alternative variants sharing k-mers. It then builds de

Bruijn graphs for pools of contigs overlapped by k1-mers or connected by junctions,

followed by trimming spurious graph edges. The graphs will lastly be compacted and

consolidated with original reads, and graph paths will be extracted for the sequences

of transcript isoforms.

The de novo assembly approaches are greatly useful when a reference genome is

not available or when individual modifications to the reference genome is significant.

However, due to the limited length of the short reads, the overlaps between each read

on which the assembly relies are often short and bring high ambiguity, leading to

considerable computational requirements and unsatisfied sensitivity and specificity.

7.4.1 Ab initio transcript reconstruction based on RNA-seq alignments

Provided the RNA-seq read alignment, the ab initio transcript reconstruction ap-

proaches are often preferred for a higher accuracy and efficiency than the de novo

strategy.

Because the sequences of RNA-seq reads are those kept in the mRNA transcripts,

the genomic coordinates which have RNA-seq reads aligned to can help recover the

exonic sequences on the genome. Nucleotides may be considered forming an exon

if they are contained in a same read or a same mate-pair, or if they locate close to

each other on the genome (e.g., several bases apart) with no spliced alignments in

between. The splice junctions will indicate how the exons should be concatenated
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during splicing. Then a graph can usually be constructed to picture the connectiv-

ity in a potential gene of all the reconstructed exons or of all the read alignments.

Transcripts may further be identified by traversing the graph for confident graph

paths.

In Figure 7.1c, for example, the read alignments have suggested three exons con-

nected by three splice junctions. Two transcript isoforms can be reconstructed from

the splice graph, one retaining the middle exon and one skipping. Because the read

alignments can capture exons and junctions both from existing knowledge or novel,

the reconstructed transcripts may discover uncataloged isoforms beyond transcrip-

tome annotation databases.

In real-world RNA-seq data, read alignments may contain a large amount of spu-

rious splice junctions. The identification of exons may be also complicated by in-

sufficient sampling, intron noises and read mapping issues. As a result, the splice

graph may be too complex or disconnected. Heuristics such as maximum parsimony

or abundance-based regularization are what computational approaches usually rely

on, for the identification of a most probable and compact set of transcripts.

Provided with the RNA-seq read alignments, a more favorable pipeline to profile

the transcriptome with short reads is the reconstruction of transcripts from the read

alignments. This is typically denoted as the ab initio reconstruction.

Because the reads were sampled from the mRNA transcripts, genomic loci that are

covered by read alignments should then correspond to exonic sequences that eventu-

ally constitute the mRNA molecule. The reads with spliced alignments were sampled

at the boundary of two consecutive exons in an mRNA transcript. The gaps in the

166



www.manaraa.com

spliced alignments then reveal the splice junctions on the genome, indicating the exon

boundaries and how the exons should be connected (Figure 7.3a). Thereafter, a splice

graph [Heber et al., 2002, Sammeth, 2009, Singh et al., 2011, Hu et al., 2012] may be

constructed consisting all inferred exons (typically graph vertices) and splice junctions

(typically graph edges) (Figure 7.3b). The edges may further have directions that

show the transcription strand, making the splice graph acyclic. Computationally, a

candidate transcript then corresponds to a path in the splice graph. The final set

of transcripts will be derived after filtering using transcript abundance or biological

knowledge and possible compacting using long reads or paired-end reads [Feng et al.,

2011, Li et al., 2011a, Guttman et al., 2010]. Alternatively, Cufflinks [Trapnell et al.,

2010] constructs a read-level overlap graph to represent the transcription compatibil-

ity among all read alignments (Figure 7.3c). Alignments (corresponding to vertices

in the overlap graph) that may possibly come from the same transcript are connected

by edges. The set of transcripts is then derived as the minimum path cover in the

graph.

The performance of the reconstruction highly depends on the complexity of the

gene model and the quality of the read alignments. If read alignments miss exonic

sequences or splice junctions, the derived transcript set will probably lose transcript

isoforms or have exons discontinued in consequence. More often observed are com-

plex regions where read alignments have suggested too many spurious splice junction,

leading to too many candidate paths (transcripts) in the splice graph. The primary

difficulty in resolving these obstacles is the ambiguity in linking variants of different

alternative splicing events into full-length transcripts. Even the paired-end reads may
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Figure 7.3: An illustration of the ab initio transcript reconstruction pipelines. (a)
Alignments of paired-end RNA-seq short read to the reference genome. (b) The
splice graph representation depicting the connectivity of exons via splice junctions.
Possible transcripts correspond to valid paths in the graph. (c) The read overlap
representation depicting the compatibility of read alignments. Possible transcripts
correspond to a path cover in the graph. (d) The heuristics in transcript set selec-
tion. The maximum sensitivity takes all possible transcripts as condidate for future
filtering. while the maximum parsimony takes the minimum set of transcripts capable
of explaining the splice variants from the read alignments.
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provide only local pieces of evidence up to several hundreds of base pairs (typically

¡500bp), usually insufficient to span all alternative splicing events in a gene thus un-

able to uniquely identify the complete transcript composition [Garber et al., 2011].

In such case, heuristics are what the existing ab initio methods rely on (Figure 7.3d).

For example, on the basis of maximum parsimony, Cufflinks [Trapnell et al., 2010]

will choose the minimum set of transcripts that can explain the observed paired-end

read alignments. Following maximum sensitivity, Scripture [Guttman et al., 2010] will

keep all putative isoforms, subject to later biological filtering. Other methods, such as

IsoLasso [Li et al., 2011a], apply L1-regularization (known as Lasso) to reinforce tran-

script set shrinkage by favoring candidates with higher estimated abundance. Each

of these transcript-level heuristics reflects a general sense about what true transcript

isoforms could look like. For example, the philosophy behind maximum parsimony

is that the most concise set of transcripts necessary to explain the data tends to

have sufficient sensitivity and high specificity, and that behind regularization is that

transcripts with very low expression are likely the artifacts due to sampling ambiguity.

7.4.2 Transcript abundance estimation

The number of RNA-seq reads falling in a gene may be collected as a measure for

the gene’s expression level. However, transcripts in a gene typically share sequences.

It is not trivial to identify the original transcript for reads mapped to common exons

where transcripts overlap. As a result, the transcripts’ expression level may not

be derived by counting the RNA-seq read alignments. The transcript abundance

estimation is then a procedure that estimates the expression level of the transcripts
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based on the read alignments. The transcript abundance estimation approaches have

been discussed in Section 5.2.

For example, in Figure 7.1d, a total of 11 reads are mapped to gene G. Because

both transcripts T1 and T2 contain exon 1 (purple) and exon 3 (blue), the reads

mapped to these two exons may come from either T1 or T2. Reads mapped to exon

2 (yellow), on the other hand, can only come from T1. Based on reads mapped

to sequences unique to a subset of transcripts and leveraging the reads mapped to

the shared sequences, the transcripts in the gene G may have expression estimates

with plotted posterior densities. The modes of the two posterior densities indicate

that, given the observed read alignments, the most probable abundance of T1 is

approximately 2 times that of T2. The width of the density shapes then suggest

that the inference about T1 may be more precise than T2 with a less variance. Point

estimates may also be drawn with similar observations.

Although a handful of probabilistic models have been developed to infer the tran-

script abundance from the read alignments, the inference may be problematic under

certain circumstances. For example, the accuracy and reliability of the inference tend

to decrease quickly when the number of transcripts in a gene increases. The main

reason is that transcripts may share a significant amount of sequences, making deter-

mining the origin of the reads highly ambiguous. Various types of sampling biases in

RNA-seq may also affect the inference. For example, more reads may be attracted by

the GC-content regions (regions rich of nucleotides ’G’ and ’C’), and the exons at the

start or end of a transcript may get less reads. The non-uniform sampling distribution

may break the assumptions of an inference procedure and bias the result.
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7.4.3 Differential transcription analysis

Transcriptome is known to vary in response to cellular differentiation and environmen-

tal change. Transcriptomes of cells from different tissues or different conditions may

differ in the diversity of the transcript set as well as the abundance of the transcripts.

Accordingly, the RNA-seq reads sampled from the transcriptomes will change. The

transcript abundance estimation approaches have been discussed in Section 4.2.

In Figure 7.1e, for example, a group of RNA-seq reads from sample B are also

mapped to the same gene as in Figure 7.1d. However, the read distribution on this

gene is different in sample A and sample B, on exon 2 in particular. The read

distribution in sample B suggests a higher expression of transcript T2 but very low

expression of T1. Comparing the two samples, the dominant transcript switches from

T1 in sample A to T2 in sample B. The divergence between the profiles of transcript

abundance in the two samples may be further described quantitatively by comparing

the transcript proportions or their absolute expression levels. Statistical significance

may also be drawn for the observed divergence in transcription.

Computational approaches for analyzing differential transcription often take one

of three strategies. The first strategy compares across samples the read distribution

on a gene, for example, the number of reads that sample each position of the gene’s

exons, or the count of spliced reads that span a splice junction. The second strategy

estimates the transcript abundance first and compares transcription profiles explicitly

at the transcript level. This strategy may provide direct insights into differentiated

transcripts, but the accuracy of abundance estimation is often concerned. The last
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strategy leverages the computational efficiency and the biological interpretability, by

analyzing the alternative splicing events. Each local event depicts how transcript

sequences diverge at a locus in a gene. These event-based approaches typically have

higher accuracy of transcript isoform identification and variant abundance estimation,

and hence are more precise than transcript-based approaches.

Copyright c© Yin Hu, 2013.
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Chapter 8 Conclusion

This dissertation has presented a comprehensive framework for transcriptome analysis

using high-throughput RNA sequencing data. Without dependence on any transcript

annotation, the framework has the ability to discover novel exons, splice junctions

and genome modifications that are not cataloged in existing database. This purely

data-driven strategy also avoids the risk of missing unannotated transcripts that

may code clinically important proteins or introducing unnecessary gene models that

may confound abundance estimation, both may bias the result of the differential

transcription analysis.

The read pairing in paired-end sequencing strategy allows higher transcriptome

coverage and more validating information for resolving ambiguous read mapping.

Existing methods typically use the expected adjacency between the mapped end read

positions to guide the choice of best read alignments [Au et al., 2010] or use the

pairing to help identify transcript structure [Trapnell et al., 2010]. The inner portion

between two ends if often confounded with alternative splicing and its coverage is

often not well employed. The first stage in the framework then resolve the alignment

of the inner portion together with those of the sequenced end reads, as an entirety

referred to as the transcript fragment alignment. The construction of unknown inner

portions is enabled by path searching in the genome-wide splice graph reconstructed

from the read alignments. All splice junctions, end read alignments and inner portion

alignments are then summarized in a probabilistic model to identify the globally best
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alignment maximizing the joint probability of the entire data.

The core DiffSplice algorithm consists of four major components — a probabilistic

model that maps paired-end RNA-seq reads to the reference genome and infers the full

transcript fragment alignments, the reconstruction of the genome-wide splice graph

from the fragment alignments and the identification of alternative splicing modules,

the inference of splicing isoform abundance followed by statistical differential tran-

scription test, and a exploratory clustering scheme for consistent transcription pattern

discovery. The core advance of this framework as compared to existing methodolo-

gies is the development of the divide-and-conquer approach that automatically local-

izes the difference between transcriptomes into Alternative Splicing Modules (ASMs)

where transcript isoforms diverge.

The framework directly starts from the output sequence files out of RNA-seq ex-

periments. Sequenced RNA-seq reads are first mapped to the reference genome using

a short read aligner. For paired-end reads, MapPER is applied to find alignments for

the entire transcript fragments based on the distribution of insert-size. This further

consolidates the prediction of splice junctions and increases the read coverage on the

transcriptome.

From the union of the RNA-seq alignments from all samples, the genome-wide

expression-weighted splice graph (ESG) is constructed to summarize the expression

and splicing information on the genome in the given dataset. This unified graph pro-

vides a survey of all possible alternative splicing and transcription events that may be

present in any sample, condensing all samples with the same graph representation but

distinguishing them by the graph weights. The ESG is then iteratively decomposed
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in a top-down manner to resolve all regions where transcripts diverge and reconvene.

These regions are called the ASMs. The diverging paths in each module differentiate

transcripts in this locus and will be the units for analyzing differential transcription.

For every sample, isoform abundance estimation is thereafter conducted for the

diverging paths in each module, based on the read distribution observed in the sam-

ple. The absolute abundance as well as the relative proportion of every alternative

transcription path are estimated. This estimation procedure works outward in a

bottom-up manner, from nested, smaller modules to parent, larger modules. Subse-

quently the estimates for the expression of each ASM are propagated to derive an

estimate for the overall gene expression.

Lastly, a statistical test is performed to evaluate the magnitude and consistency

of differences in transcription across sample groups, by comparing the estimated al-

ternative path proportions in every sample. Controlled by the false discovery rate,

the significance of the observed differences is assessed through a non-parametric per-

mutation test, alleviating the risk of inappropriate assumption on the distribution of

the test statistics. In this way, the detection of splicing isoforms that are differentially

expressed is localized at individual ASMs. The differential expression level for each

gene is similarly evaluated by testing the estimated gene expression. (Section 5)

The scope of current differential transcription analyses is limited at the group-

wise analyses, which focuses on the test of differences from one sample group to

another. Each sample group corresponding to a hypothetically different condition,

such as “diseased” versus “normal”. This type of analysis typically assumes a pop-

ulation distribution that all samples in the group should follow. This assumption,
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however, may not hold in clinical experiments, especially in large scale datasets like

the ones in the Cancer Genome Atlas (TCGA) project. Such datasets have less clear

separation of samples, such as subtypes of breast cancer, and hence larger biological

variation within a sample group as well as significantly overlapped features across

sample groups. The work presented in this dissertation has extended the differential

transcription analysis to the scenario where the grouping information is not available

or any consistent change from one group to another is subtle. A non-parametric

approach has been described utilizing the hierarchical clustering combined with the

Mahalanobis distance. This clustering scheme allows the discovery of prominent clus-

ters of samples that exhibit consistent pattern of transcription on some genes, even

without knowledge of the number of clusters. A statistical measurement is further

developed to score and rank the clusters according to classification information they

may possess.

On the basis of the transcript fragment alignments and the reconstructed genome-

wide splice graph, the differential transcription analysis performs isoform abundance

estimation and statistical tests at the alternative splicing level. The unique design

that distinguishes this framework is the automatic identification of alternative splic-

ing modules. Compared to the approaches based on the full transcripts, this module-

based analysis may achieve higher sensitivity and specificity because it circumvents

the need of full transcript reconstruction and quantification, both having been found

computationally unstable and inaccurate under current technologies of short read

sequencing. Because the transcript isoform identification and the quantification are

local, the effects of sampling biases in the RNA-seq experiments are also alleviated,
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which will also improve the precision of the differential transcription analysis. Biolog-

ically, the alternative splicing modules highlights the loci where transcripts in a gene

diverge, which may help the interpretation of differential transcription by answering

questions such as which sequences might be responsible for the change of phenotype.

The described framework has been evaluated extensively using a series of simu-

lation studies and real RNA-seq datasets. Synthetic data generated by mimicking

practical sequencing procedures on human transcriptome has justified the accuracy

of alternative splicing variant quantification under various sampling depths and sam-

pling biases. Comparison with other state-of-the-art methods has demonstrated the

superior sensitivity and specificity of the described framework in calling genes tran-

scribed differently in different conditions. On the lung differentiation dataset and

the breast cancer dataset, the DiffSplice framework successfully identified hundreds

of genes that may perform key function in cell development and cancer type distinc-

tion, including genes with novel splicing isoforms and novel insertion/deletions. The

application of the framework on the 728 breast cancer samples further demonstrated

the scalability of the analysis. Besides a list of clinically significant genes that consis-

tently shift transcription from subtype to subtype, the framework also discovered a

list of sample clusters that highlight the alternative splicing events which may possess

high value in subtype definition and classification.

The software package of the methods described in this dissertation will be open-

source, released and maintained at http://www.netlab.uky.edu/p/bioinfo/ and

freely available to the research community. The pipeline will take the RNA-seq read

files in standard FASTA or FASTQ format as input and generates both table results
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that record the expression profiles and transcription differences and GTF tracks that

can be visualized through the genome browser. The whole software suit will be

finely tuned and optimized for both computational efficiency and analyzing accuracy,

serving as a highly competitive pipeline for comprehensive studies on differential

transcriptome expression.

Empowered by the advancement of sequencing technologies, the role of sequencing

data in any biomedical research/application is becoming more and more prominent.

Three major characteristics can be envisioned for future sequencing data analysis.

First, the size of data will be skyrocketing as the sequencing price keeps dropping.

Tens of samples per study is turning common, and datasets with thousands of samples

have become available. Scalability will be even more emphasized in the evaluation of

computational approaches. Second, the complexity of data may exhibit exponential

increase as sampling depth increases and knowledge expands. This complexity has

also been demonstrated by the considerable discrepancy among different methods on

same datasets. Methodology designs are facing unforeseen challenges in leveraging

sensitivity and specificity, and in maintaining robust performance across different

datasets. Third, the integration of various data sources will become more and more

important. Such integrations, such as combining DNA data and RNA data, may

benefit the solution of well-defined problems such as structural variation detection as

well as establish connections between fundamentally related domains that have not

been linked functionally such as the genome aberrations and mRNA expression.

Copyright c© Yin Hu, 2013.
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